ترغب بنشر مسار تعليمي؟ اضغط هنا

Berezin-Toeplitz quantization on Lie groups

163   0   0.0 ( 0 )
 نشر من قبل Brian C. Hall
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brian C. Hall




اسأل ChatGPT حول البحث

Let K be a connected compact semisimple Lie group and Kc its complexification. The generalized Segal-Bargmann space for Kc, is a space of square-integrable holomorphic functions on Kc, with respect to a K-invariant heat kernel measure. This space is connected to the Schrodinger Hilbert space L^2(K) by a unitary map, the generalized Segal-Bargmann transform. This paper considers certain natural operators on L^2(K), namely multiplication operators and differential operators, conjugated by the generalized Segal-Bargmann transform. The main results show that the resulting operators on the generalized Segal-Bargmann space can be represented as Toeplitz operators. The symbols of these Toeplitz operators are expressed in terms of a certain subelliptic heat kernel on Kc. I also examine some of the results from an infinite-dimensional point of view based on the work of L. Gross and P. Malliavin.



قيم البحث

اقرأ أيضاً

We examine the Schrodinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrodinger algebra is computed. In fact, the sl(2) piece of the Schrodinge r algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built from the Heisenberg piece as the quadratic elements in the Heisenberg-Weyl enveloping algebra. The structure of the Schrodinger algebra is revealed in a lucid way by the form of the Berezin representation.
145 - Yuri A. Kordyukov 2021
We establish the theory of Berezin-Toeplitz quantization on symplectic manifolds of bounded geometry. The quantum space of this quantization is the spectral subspace of the renormalized Bochner Laplacian associated with some interval near zero. We sh ow that this quantization has the correct semiclassical limit.
We present a quantization scheme of an arbitrary measure space based on overcomplete families of states and generalizing the Klauder and the Berezin-Toeplitz approaches. This scheme could reveal itself as an efficient tool for quantizing physical sys tems for which more traditional methods like geometric quantization are uneasy to implement. The procedure is illustrated by (mostly two-dimensional) elementary examples in which the measure space is a $N$-element set and the unit interval. Spaces of states for the $N$-element set and the unit interval are the 2-dimensional euclidean $R^2$ and hermitian $C^2$ planes.
249 - Jiri Hrivnak , Jiri Patera 2009
Three types of numerical data are provided for simple Lie groups of any type and rank. This data is indispensable for Fourier-like expansions of multidimensional digital data into finite series of $C-$ or $S-$functions on the fundamental domain $F$ o f the underlying Lie group $G$. Firstly, we consider the number $|F_M|$ of points in $F$ from the lattice $P^{vee}_M$, which is the refinement of the dual weight lattice $P^{vee}$ of $G$ by a positive integer $M$. Secondly, we find the lowest set $Lambda_M$ of dominant weights, specifying the maximal set of $C-$ and $S-$functions that are pairwise orthogonal on the point set $F_M$. Finally, we describe an efficient algorithm for finding, on the maximal torus of $G$, the number of conjugate points to every point of $F_M$. Discrete $C-$ and $S-$transforms, together with their continuous interpolations, are presented in full generality.
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the result s of Hrivnak and Patera are extended to two additional recently discovered families of special functions, called $S^s-$ and $S^l-$functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments $F^s_M$ and $F^l_M$ of a lattice in any dimension $ngeq2$ and of any density controlled by $M$, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا