ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for polar jets as precursors of polar plume formation

156   0   0.0 ( 0 )
 نشر من قبل Nour-Eddine Raouafi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are utilized to study polar coronal jets and plumes. The study focuses on the temporal evolution of both structures and their relationship. The data sample, spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV jets, with the plume haze appearing minutes to hours after the jet was observed. The remaining jets occurred in areas where plume material previously existed causing a brightness enhancement of the latter after the jet event. Short-lived, jet-like events and small transient bright points are seen (one at a time) at different locations within the base of pre-existing long-lived plumes. X-ray images also show instances (at least two events) of collimated-thin jets rapidly evolving into significantly wider plume-like structures that are followed by the delayed appearance of plume haze in the EUV. These observations provide evidence that X-ray jets are precursors of polar plumes, and in some cases cause brightenings of plumes. Possible mechanisms to explain the observed jet and plume relationship are discussed.



قيم البحث

اقرأ أيضاً

124 - E. Tavabi , S. Koutchmy , 2018
We examine the dynamical behavior of white light polar plume structures in the inner corona that are observed from the ground during total solar eclipses, based on their EUV hot and cool emission line counterparts observed from space. EUV observation s from SDO/AIA of a sequence of rapidly varying coronal hole structures are analyzed. Evidence of events showing acceleration in the 1.25 Mk line of Fe XII at 193 A is given. The structures along the plume show an outward velocity of about 140 kms-1 that can be interpreted as an upwards propagating wave in the 304 A and 171 A lines; higher speeds are seen in 193 A (up to 1000 km/s). The ejection of the cold He II plasma is delayed by about 4 min in the lowest layer and more than 12 min in the highest level compared to the hot 193 A behavior. A study of the dynamics using time-slice diagrams reveals that a large amount of fast ejected material originates from below the plume, at the footpoints. The release of plasma material appears to come from a cylinder with quasi-parallel edge-enhanced walls. After the initial phase of a longitudinal acceleration, the speed substantially reduces and the ejecta disperse into the environment. Finally, the detailed temporal and spatial relationships between the cool and hot components were studied with simultaneous multi-wavelength observations, using more AIA data. The outward-propagating perturbation of the presumably magnetic walls of polar plumes supports the suggestion that Alfven waves propagate outwardly along these radially extended walls.
We present stereoscopic reconstructions of the location and inclination of polar plumes of two data sets based on the two simultaneously recorded images taken by the EUVI telescopes in the SECCHI instrument package onboard the emph{STEREO (Solar TErr estrial RElations Observatory)} spacecraft. The ten plumes investigated show a superradial expansion in the coronal hole in 3D which is consistent with the 2D results. Their deviations from the local meridian planes are rather small with an average of $6.47^{circ}$. By comparing the reconstructed plumes with a dipole field with its axis along the solar rotation axis, it is found that plumes are inclined more horizontally than the dipole field. The lower the latitude is, the larger is the deviation from the dipole field. The relationship between plumes and bright points has been investigated and they are not always associated. For the first data set, based on the 3D height of plumes and the electron density derived from SUMER/emph{SOHO} Si {sc viii} line pair, we found that electron densities along the plumes decrease with height above the solar surface. The temperature obtained from the density scale height is 1.6 to 1.8 times larger than the temperature obtained from Mg {sc ix} line ratios. We attribute this discrepancy to a deviation of the electron and the ion temperatures. Finally, we have found that the outflow speeds studied in the O {sc vi} line in the plumes corrected by the angle between the line of sight and the plume orientation are quite small with a maximum of 10 $mathrm{km s^{-1}}$. It is unlikely that plumes are a dominant contributor to the fast solar wind.
Coronal holes are well accepted to be source regions of the fast solar wind. As one of the common structures in coronal holes, coronal plumes might contribute to the origin of the nascent solar wind. To estimate the contribution of coronal plumes to the nascent solar wind, we make the first attempt to estimate their populations in solar polar coronal holes. By comparing the observations viewed from two different angles taken by the twin satellites of STEREO and the results of Monte Carlo simulations, we estimate about 16--27 plumes rooted in an area of $4times10^4$ arcsec$^2$ of the polar coronal holes near the solar minimum, which occupy about 2--3.4% of the area. Based on these values, the contribution of coronal plumes to the nascent solar wind has also been discussed. A further investigation indicates that more precise number of coronal plumes can be worked out with observations from three or more viewing angles.
We discuss how the internal structure of ultracold molecules, trapped in the motional ground state of optical tweezers, can be used to implement qudits. We explore the rotational, fine and hyperfine structure of $^{40}$Ca$^{19}$F and $^{87}$Rb$^{133} $Cs, which are examples of molecules with $^2Sigma$ and $^1Sigma$ electronic ground states, respectively. In each case we identify a subset of levels within a single rotational manifold suitable to implement a 4-level qudit. Quantum gates can be implemented using two-photon microwave transitions via levels in a neighboring rotational manifold. We discuss limitations to the usefulness of molecular qudits, arising from off-resonant excitation and decoherence. As an example, we present a protocol for using a molecular qudit of dimension $d=4$ to perform the Deutsch algorithm.
We have used spectrophotometric data from the Hubble Space Telescope to eclipse-map the primary component of the RS CVn binary SV Cam over 9 HST orbits. We find from these observations and the HIPPARCOS parallax that the surface flux in the eclipsed low-latitude region of the primary is about 30% lower than computed from a PHOENIX model atmosphere at the effective temperature that best fits the spectral energy distribution of the eclipsed flux. This can only be accounted for if about a third of the primarys surface is covered with unresolved dark star-spots. Extending this to the full surface of the primary, we find that even taking into account this spot filling factor there is an additional flux deficit on the primary star. This can only be explained if there is a large polar spot on the primary star extending from the pole to latitude 48 degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا