Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and the transverse velocity to an accuracy of about 1 km/s. Gaia will observe tracers of Galactic structure across the whole HR diagram, including Cepheids, RR Lyrae, white dwarfs, F dwarfs and HB stars. Onboard low resolution spectrophotometry will permit -- in addition to a Teff estimate -- dwarf/giant discrimination, metallicity measurement and extinction determination. For the first time, then, Gaia will provide us with a 3D spatial/properties map and at least a 2D velocity map of these tracers (RVs will be obtained too for brighter stars.) This will be a goldmine of information from which to learn about the origin and evolution of the Galactic disk. I briefly review the Gaia mission, and then show how the expected astrometric accuracies translate into distance and velocity accuracies and statistics. I examine the impact Gaia should have on a few scientific areas relevant to the Galactic disk. I discuss how a better determination of the spiral arm locations and pattern speed, plus a better reconstruction of the Suns orbit over the past billion years (from integration through the Gaia-measured gravitational potential) will allow us to assess the possible role of spiral arm crossings in ice ages and mass extinctions on the Earth.