ﻻ يوجد ملخص باللغة العربية
Let $(X,Y)$ be a bivariate random vector. The estimation of a probability of the form $P(Yleq y mid X >t) $ is challenging when $t$ is large, and a fruitful approach consists in studying, if it exists, the limiting conditional distribution of the random vector $(X,Y)$, suitably normalized, given that $X$ is large. There already exists a wide literature on bivariate models for which this limiting distribution exists. In this paper, a statistical analysis of this problem is done. Estimators of the limiting distribution (which is assumed to exist) and the normalizing functions are provided, as well as an estimator of the conditional quantile function when the conditioning event is extreme. Consistency of the estimators is proved and a functional central limit theorem for the estimator of the limiting distribution is obtained. The small sample behavior of the estimator of the conditional quantile function is illustrated through simulations.
In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. W
We propose and analyze an algorithm for the sequential estimation of a conditional quantile in the context of real stochastic codes with vectorvalued inputs. Our algorithm is based on k-nearest neighbors smoothing within a Robbins-Monro estimator. We
We consider high-dimensional multivariate linear regression models, where the joint distribution of covariates and response variables is a multivariate normal distribution with a bandable covariance matrix. The main goal of this paper is to estimate
This paper studies the minimax rate of nonparametric conditional density estimation under a weighted absolute value loss function in a multivariate setting. We first demonstrate that conditional density estimation is impossible if one only requires t
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape