ترغب بنشر مسار تعليمي؟ اضغط هنا

The Borexino detector at the Laboratori Nazionali del Gran Sasso

109   0   0.0 ( 0 )
 نشر من قبل Marco Pallavicini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).



قيم البحث

اقرأ أيضاً

174 - P. Agnes , T. Alexander , A. Alton 2014
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (W IMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4+-0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a (1422+-67) kg d exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1x10^-44 cm^2 for a WIMP mass of 100 GeV/c^2.
62 - G. Piperno 2016
The PADME experiment will search for the invisible decay of Dark Photons produced in interactions of positron from the DA$Phi$NE Linac on a target. The collaboration aims at reaching a sensitivity of $sim10^{-3}$ on the coupling constant for values of Dark Photon masses up to $23.7,mbox{MeV}$.
The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment to search for neutrinoless double beta decay ($0 ubetabeta$) in $^{130}$Te and other rare processes. CUORE is a cryogenic detector composed of 988 TeO$_2$ bolometers for a total mass of about 741 kg. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV$cdot$kg$cdot$y) will be reached, in five years of data taking CUORE will have an half life sensitivity around $1times 10^{26}$ y at 90% C.L. As a first step towards CUORE a smaller experiment CUORE-0, constructed to test and demonstrate the performances expected for CUORE, has been assembled and is running. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three m onths demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.
In the VIP2 (VIolation of the Pauli Exlusion Principle) experiment at the Gran Sasso underground laboratory (LNGS) we are searching for possible violations of standard quantum mechanics predictions. With high precision we investigate the Pauli Exclus ion Principle and the collapse of the wave function (collapse models). We will present our experimental method of searching for possible small violations of the Pauli Exclusion Principle for electrons, via the search for anomalous X-ray transitions in copper atoms, produced by new electrons (brought inside a copper bar by circulating current) which could have the probability to undergo Pauli-forbidden transition to the ground state (1 s level) already occupied by two electrons. We will describe the concept of the VIP2 experiment taking data at LNGS presently. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10$^{-31}$. We will show preliminary experimental results obtained at LNGS and discuss implications of a possible violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا