ترغب بنشر مسار تعليمي؟ اضغط هنا

Band structure effects on the Be(0001) acoustic-surface-plasmon energy dispersion

179   0   0.0 ( 0 )
 نشر من قبل J. M. Pitarke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report first-principles calculations of acoustic surface plasmons on the (0001) surface of Be, as obtained in the random-phase approximation of many-body theory. The energy dispersion of these collective excitations has been obtained along two symmetry directions. Our results show a considerable anisotropy of acoustic surface plasmons, and underline the capability of experimental measurements of these plasmons to {it map} the electron-hole excitation spectrum of the quasi two-dimensional Shockley surface state band that is present on the Be(0001) surface.



قيم البحث

اقرأ أيضاً

Most spectroscopic methods for studying the electronic structure of metal surfaces have the disadvantage that either only occupied or only unoccupied states can be probed, and the signal is cut at the Fermi edge. This leads to significant uncertainti es, when states are very close to the Fermi level. By performing low-temperature scanning tunneling spectroscopy and ab initio calculations, we study the surface-electronic structure of La(0001) and Lu(0001), and demonstrate that in this way detailed information on the surface-electronic structure very close to the Fermi energy can be derived with high accuracy.
118 - Yoshiyuki Ohtsubo 2013
We performed angle-resolved photoelectron spectroscopy of the Bi(111) surface to demonstrate that this surface support edge states of non-trivial topology. Along the $bar{Gamma}bar{M}$-direction of the surface Brillouin zone, a surface-state band dis perses from the projected bulk valence bands at $bar{Gamma}$ to the conduction bands at $bar{M}$ continuously, indicating the non-trivial topological order of three-dimensional Bi bands. We ascribe this finding to the absence of band inversion at the $L$ point of the bulk Bi Brillouin zone. According to our analysis, a modification of tight-binding parameters can account for the non-trivial band structure of Bi without any other significant change on other physical properties.
303 - Ping Zhang , Bo Sun , Yu Yang 2008
The adsorption and dissociation of O$_{2}$ molecules at the Be(0001) surface is studied by using density-functional theory within the generalized gradient approximation and a supercell approach. The physi- and chemisorbed molecular precursor states a re identified to be along the parallel and vertical channels, respectively. It is shown that the HH-Z (see the text for definition) channel is the most stable channel for the molecular chemisorption of O$_{2}$. The electronic and magnetic properties of this most stable chemisorbed molecular state are studied, which shows that the electrons transfer forth and back between the spin-resolved antibonding $pi^{ast}$ molecular orbitals and the surface Be $sp$ states. A distinct covalent weight in the molecule-metal bond is also shown. The dissociation of O$_{2}$ is determined by calculating the adiabatic potential energy surfaces, wherein the T-Y channel is found to be the most stable and favorable for the dissociative adsorption of O$_{2}$. Remarkably, we predict that unlike the other simple $sp$ metal surfaces such as Al(111) and Mg(0001), the textit{adiabatic} dissociation process of O$_{2}$ at Be(0001) is an activated type with a sizeable energy barrier.
Transition metal surfaces catalyse a broad range of thermally-activated reactions involving carbon-containing-species -- from atomic carbon to small hydrocarbons or organic molecules, and polymers. These reactions yield well-separated phases, for ins tance graphene and the metal surface, or, on the contrary, alloyed phases, such as metal carbides. Here, we investigate carbon phases on a rhenium (0001) surface, where the former kind of phase can transform into the latter. We find that this transformation occurs with increasing annealing time, which is hence not suitable to increase the quality of graphene. Our scanning tunneling spectroscopy and reflection high-energy electron diffraction analysis reveal that repeated short annealing cycles are best suited to increase the lateral extension of the structurally coherent graphene domains. Using the same techniques and with the support of density functional theory calculations, we next unveil, in real space, the symmetry of the many variants (two six-fold families) of a rhenium surface carbide observed with diffraction since the 1970s, and finally propose models of the atomic details. One of these models, which nicely matches the microscopy observations, consists of parallel rows of eight aligned carbon trimers with a so-called $(7timessqrt{mathrm{19}})$ unit cell with respect to Re(0001).
Silicon oxide can be formed in a crystalline form, when prepared on a metallic substrate. It is a candidate support catalyst and possibly the ultimately-thin version of a dielectric host material for two-dimensional materials (2D) and heterostructure s. We determine the atomic structure and chemical bonding of the ultimately thin version of the oxide, epitaxially grown on Ru(0001). In particular, we establish the existence of two sub-lattices defined by metal-oxygen-silicon bridges involving inequivalent substrate sites. We further discover four electronic bands below Fermi level, at high binding energies, two of them forming a Dirac cone at K point, and two others forming semi-flat bands. While the latter two correspond to hybridized states between the oxide and the metal, the former relate to the topmost silicon-oxygen plane, which is not directly coupled to the substrate. Our analysis is based on high resolution X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and density functional theory calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا