ﻻ يوجد ملخص باللغة العربية
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as $ell(omega)sim 1/omega^alpha$. We show that the well known result $alpha=2$ applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, $alpha$ starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, $alpha=1$. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.
We report on the experimental investigation of the response of a three-dimensional Bose-Einstein condensate (BEC) in the presence of a one-dimensional (1D) optical lattice. By means of Bragg spectroscopy we probe the band structure of the excitation
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-ene
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials h
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit
The interplay between disorder and interactions is a leit-motiv of condensed matter physics, since it constitutes the driving mechanism of the metal-insulator transition. Bose-Einstein condensates in optical potentials are proving to be powerful tool