ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Chessboards in the Deuterium Molecular Ion

92   0   0.0 ( 0 )
 نشر من قبل Tore Birkeland
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. R. Calvert




اسأل ChatGPT حول البحث

We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)



قيم البحث

اقرأ أيضاً

80 - Mihaela Vatasescu 2018
We characterize both entanglement and quantum coherence in a molecular system by connecting the linear entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence and local quantum uncertainty on electr onic energy. Linear entropy of entanglement and quantifiers of quantum coherence are derived for a molecular system described in a bipartite Hilbert space H=Hel x Hvib of finite dimension Nel x Nv, and relations between them are established. For the specific case of the electronic-vibrational entanglement, we find the linear entropy of entanglement as having a more complex informational content than the von Neumann entropy. By keeping the information carried by the vibronic coherences in a molecule, linear entropy seizes vibrational motion in the electronic potentials as entanglement dynamics. We analyze entanglement oscillations in an isolated molecule, and show examples for the control of entanglement dynamics in a molecule through the creation of coherent vibrational wave packets in several electronic potentials by using chirped laser pulses.
We demonstrate photodissociation of BeH$^+$ ions within a Coulomb crystal of thousands of $^9$Be$^+$ ions confined in a Penning trap. Because BeH$^+$ ions are created via exothermic reactions between trapped, laser-cooled Be$^+$($^2text{P}_{3/2}$) an d background H$_2$ within the vacuum chamber, they represent a major contaminant species responsible for infidelities in large-scale trapped-ion quantum information experiments. The rotational-state-insensitive dissociation scheme described here makes use of 157 nm photons to produce Be$^+$ and H as products, thereby restoring Be$^+$ ions without the need for reloading. This technique facilitates longer experiment runtimes at a given background H$_2$ pressure, and may be adapted for removal of MgH$^+$ and AlH$^+$ impurities.
We predict the existence of a universal class of ultralong-range Rydberg molecular states whose vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical origin of these exotic molecules, accurately predicts thei r properties, and reveals features of ultralong-range Rydberg molecules and heavy Rydberg states with a surprisingly small Rydberg constant. The latter is determined by the small effective charge of the dressed anion, which outweighs the contribution of the molecules large reduced mass. This renders these molecules the only known few-body systems to have a Rydberg constant smaller than $R_infty/2$.
In describing the motion of atoms and clusters, we face with choosing quantum mechanics or classical mechanics under different conditions. In principle, there exist two criteria for this choice, but they do contradict in some cases though they are in agreement for other cases. Actually, this problem is closely related with the effective centre-of-mass method, the underlying application of quantum mechanics. It is shown that quantum mechanics must be selected for particles motion when the de Broglie wave length of the mass centre is larger than the particle size, and in such case the effective centre-of-mass can be used in Quantum Mechanics. In order to test this conclusion, an easy-manufactured experiment is suggested.
83 - D. L. Huber 2018
We investigate the linear behavior in the 2+ ion concentration observed in the double photoionization of a variety of aromatic molecules. We show it arises when the photoelectrons are emitted simultaneously. Neglecting the momentum of the incoming ph oton and the momentum transferred to the molecule, it follows that the momenta of the individual photoelectrons are oppositely directed and equal in magnitude. Under steady-state conditions, the ion concentration is proportional to the rate at which the ions are created which, in turn, varies as the product of the densities of states of the individual electrons. The latter vary as the square root of the kinetic energy, leading to overall linear behavior. The origin of the linear behavior in pyrrole and related molecules is attributed to the presence of atoms that destroy the periodicity of a hypothetical carbon loop. In contrast, the resonant behavior observed in pyridine and related molecules, where a fraction of the CH pairs is replaced by N atoms, is associated with electron transfer between the nitrogen atoms and carbon atoms that preserves the periodicity of the closed loop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا