ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized proportional conflict redistribution rule applied to Sonar imagery and Radar targets classification

94   0   0.0 ( 0 )
 نشر من قبل Arnaud Martin
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arnaud Martin




اسأل ChatGPT حول البحث

In this chapter, we present two applications in information fusion in order to evaluate the generalized proportional conflict redistribution rule presented in the chapter cite{Martin06a}. Most of the time the combination rules are evaluated only on simple examples. We study here different combination rules and compare them in terms of decision on real data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. Two applications are presented here: a fusion of human experts opinions on the kind of underwater sediments depict on sonar image and a classifier fusion for radar targets recognition.



قيم البحث

اقرأ أيضاً

216 - Arnaud Martin 2008
In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of th e conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.
249 - Arnaud Martin 2012
In this paper, we present some high level information fusion approaches for numeric and symbolic data. We study the interest of such method particularly for classifier fusion. A comparative study is made in a context of sea bed characterization from sonar images. The classi- fication of kind of sediment is a difficult problem because of the data complexity. We compare high level information fusion and give the obtained performance.
96 - Arnaud Martin 2008
The sonar images provide a rapid view of the seabed in order to characterize it. However, in such as uncertain environment, real seabed is unknown and the only information we can obtain, is the interpretation of different human experts, sometimes in conflict. In this paper, we propose to manage this conflict in order to provide a robust reality for the learning step of classification algorithms. The classification is conducted by a multilayer perceptron, taking into account the uncertainty of the reality in the learning stage. The results of this seabed characterization are presented on real sonar images.
We present in this paper some examples of how to compute by hand the PCR5 fusion rule for three sources, so the reader will better understand its mechanism. We also take into consideration the importance of sources, which is different from the classical discounting of sources.
CXRs are a crucial and extraordinarily common diagnostic tool, leading to heavy research for CAD solutions. However, both high classification accuracy and meaningful model predictions that respect and incorporate clinical taxonomies are crucial for C AD usability. To this end, we present a deep HMLC approach for CXR CAD. Different than other hierarchical systems, we show that first training the network to model conditional probability directly and then refining it with unconditional probabilities is key in boosting performance. In addition, we also formulate a numerically stable cross-entropy loss function for unconditional probabilities that provides concrete performance improvements. Finally, we demonstrate that HMLC can be an effective means to manage missing or incomplete labels. To the best of our knowledge, we are the first to apply HMLC to medical imaging CAD. We extensively evaluate our approach on detecting abnormality labels from the CXR arm of the PLCO dataset, which comprises over $198,000$ manually annotated CXRs. When using complete labels, we report a mean AUC of 0.887, the highest yet reported for this dataset. These results are supported by ancillary experiments on the PadChest dataset, where we also report significant improvements, 1.2% and 4.1% in AUC and AP, respectively over strong flat classifiers. Finally, we demonstrate that our HMLC approach can much better handle incompletely labelled data. These performance improvements, combined with the inherent usefulness of taxonomic predictions, indicate that our approach represents a useful step forward for CXR CAD.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا