ترغب بنشر مسار تعليمي؟ اضغط هنا

The Neutrino Flux prediction at MiniBooNE

242   0   0.0 ( 0 )
 نشر من قبل Hirohisa A. Tanaka
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Booster Neutrino Experiment (MiniBooNE) searches for numu-to-nue oscillations using the O(1 GeV) neutrino beam produced by the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL). The Booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beamline incident on the MiniBooNE detector for both polarities of the focussing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beamline materials, as well as the decay of particles. The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.



قيم البحث

اقرأ أيضاً

The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detect ors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.
The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections-among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil. Recently a stud y of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.
194 - Andrew O. Bazarko 1999
The Booster Neutrino Experiment at Fermilab is preparing to search for muon to electron neutrino oscillations. The experiment is designed to make a conclusive statement about LSNDs neutrino oscillation evidence. The experimental prospects are outline d in light of the current results from LSND and KARMEN.
Geoneutrinos are electron antineutrinos ($bar u_e$) generated by the beta-decays of radionuclides naturally occurring inside the Earth, in particular $^{238}$U, $^{232}$Th, and $^{40}$K. Measurement of these neutrinos provides powerful constraints on the radiogenic heat of the Earth and tests on the Earth models. Since the prediction of $bar u_e$s in geoneutrino flux is subject to neutrino oscillation effects, we performed a calculation including detailed oscillation analysis in the propagation of geoneutrinos and reactor neutrinos generated around the Earth. The expected geoneutrino signal, the reactor neutrino background rates and the systematic error budget are provided for a proposed 3-kiloton neutrino detector at the Jinping underground lab in Sichuan, China. In addition, we evaluated sensitivities for the geoneutrino flux, Th/U ratio and power of a possible fission reactor in the interior of Earth.
The first measurements of antineutrino charged-current quasielastic ($ umub$ CCQE, $ umu + N to mup + N$) and neutral-current elastic ($ umub$ NCE, $ umu + N to umu + N$) cross sections with $< E_{bar{ u}} >$ $<$ 1 GeV are presented. To maximize the precision of these measurements, many data-driven background measurements were executed, including a first demonstration of charge separation using a non-magnetized detector. Apart from extending our knowledge of antineutrino interactions by probing a new energy range, these measurements constrain signal and background processes for current and future neutrino oscillation experiments and also carry implications for intra-nuclear interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا