ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization Relaxation and Collective Vortex Pinning in the Fe-Based Superconductor SmFeAsO_0.9F_0.1

527   0   0.0 ( 0 )
 نشر من قبل Huan Yang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By measuring the dynamic and traditional magnetization relaxations we investigate the vortex dynamics of the newly discovered superconductor SmFeAsO_0.9F_0.1 with Tc = 55K. It is found that the relaxation rate is rather large reflecting a small characteristic pinning energy. Moreover it shows a weak temperature dependence in wide temperature region, which resembles the behavior of the cuprate superconductors. Combining with the resistive data under different magnetic fields, a vortex phase diagram is obtained. Our results strongly suggest that the model of collective vortex pinning applies to this new superconductor very well.



قيم البحث

اقرأ أيضاً

We report a detailed study of isofield magnetic relaxation and isothermal magnetization measurements with $H$$parallel$c on an underdoped Ba$_{0.75}$K$_{0.25}$Fe$_2$As$_2$ pnictide single crystal, with superconducting transition temperature $T_c$ = 2 8 K. The second magnetization peak (SMP) has been observed at temperatures below $T_c$/2 and vanished at higher temperatures. The observed behaviour of the SMP has been studied by measuring the magnetic field dependence of relaxation rate, $R(H)$ and by performing the Maleys analysis. The results suggest that the crossover from collective to plastic pinning observed in the SMP disappears above 12 K with plastic pinning replacing collective pinning. An interesting $H$-$T$ phase diagram is obtained. The critical current density ($J_c$) was estimated using Beans model and found to be $sim$ $3.4 times 10^9$ A/m$^2$ at 10 K in the SMP region, which is comparable to an optimally doped Ba-KFe$_2$As$_2$ superconductor and may be exploited for potential technological applications. The pinning mechanism is found to be unconventional and does not follow the usual $delta l$ and $delta T_c$ pinning models, which suggest the intrinsic nature of pinning in the compound.
We study theoretically the simultaneous effect of a regular and a random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by the intervortex interaction favoring a triangular symmetry, and by the randomness trying to depin vortices from their regular positions. Both analytical and molecular-dynamics approaches are used. We construct a phase diagram of the system in the plane of regular and random pinning strengths and determine typical vortex lattice defects appearing in the system due to the disorder. We find that the total disordering of the vortex lattice can occur either in one step or in two steps. For instance, in the limit of weak pinning, a square lattice of pinned vortices is destroyed in two steps. First, elastic chains of depinned vortices appear in the film; but the vortex lattice as a whole remains still pinned by the underlying square array of regular pinning sites. These chains are composed into fractal-like structures. In a second step, domains of totally depinned vortices are generated and the vortex lattice depins from regular array.
We performed systematic AC susceptibility and magnetic moment measurements to investigate the vortex dynamics and pinning in the $EuRbFe_4As_4$ single crystal as a function of temperature, frequency, and DC magnetic field. The vortex solid-liquid lin e was determined and it fits well with $H(T_p)=H_0(1-t_p)^beta$ using $beta$=1.74-1.91, for $Hparallel ab$. It indicates a rather high pinning strength of the vortex system. The activation energy $U_0$ was determined from thermally activated flux creep theory and reached 6700 K at low fields, suggesting strong vortex pinning. A field dependence of $U_0(Hparallel ab)sim H^a$ with $a=0.47$ suggests thermally activated plastic pinning or caused by planar defects. Magnetic moment measurements also confirmed strong pinning in a $EuRbFe_4As_4$ superconductor and the superconducting response gives the main contribution to the $M(H)$ hysteresis. Additionally, we found evidence of long-range magnetic interactions in $Eu^{2+}$ sublattice and the FM-like nature of $Eu^{2+}$ atoms ordering.
99 - H. K. Mak , P. Burger , L. Cevey 2013
In cuprate high-temperature superconductors the small coherence lengths and high transition termperatures result in strong thermal fluctuations, which render the superconducting transition in applied magnetic fields into a wide continuous crossover. A state with zero resistance is found only below the vortex melting transition, which occurs well below the onset of superconducting correlations. Here we investigate the vortex phase diagram of the novel Fe-based superconductor in form of a high-quality single crystal of Ba0.5K0.5Fe2As2, using three different experimental probes (specific heat, thermal expansion and magnetization). We find clear thermodynamic signatures of a vortex melting transition, which shows that the thermal fluctuations in applied magnetic fields also have a considerable impact on the superconducting properties of iron-based superconductors.
The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to sh ow that the vortex pinning potential is dependent on whether the vorticity and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is physically crucial to the effect of the pinning center inside the vortex core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا