ﻻ يوجد ملخص باللغة العربية
By measuring the dynamic and traditional magnetization relaxations we investigate the vortex dynamics of the newly discovered superconductor SmFeAsO_0.9F_0.1 with Tc = 55K. It is found that the relaxation rate is rather large reflecting a small characteristic pinning energy. Moreover it shows a weak temperature dependence in wide temperature region, which resembles the behavior of the cuprate superconductors. Combining with the resistive data under different magnetic fields, a vortex phase diagram is obtained. Our results strongly suggest that the model of collective vortex pinning applies to this new superconductor very well.
We report a detailed study of isofield magnetic relaxation and isothermal magnetization measurements with $H$$parallel$c on an underdoped Ba$_{0.75}$K$_{0.25}$Fe$_2$As$_2$ pnictide single crystal, with superconducting transition temperature $T_c$ = 2
We study theoretically the simultaneous effect of a regular and a random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by
We performed systematic AC susceptibility and magnetic moment measurements to investigate the vortex dynamics and pinning in the $EuRbFe_4As_4$ single crystal as a function of temperature, frequency, and DC magnetic field. The vortex solid-liquid lin
In cuprate high-temperature superconductors the small coherence lengths and high transition termperatures result in strong thermal fluctuations, which render the superconducting transition in applied magnetic fields into a wide continuous crossover.
The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to sh