ﻻ يوجد ملخص باللغة العربية
We investigate effects of optical lattice potential in one- and two-dimensional two-component trapped Fermi gases with population imbalances. Using the exact diagonalization and the density matrix renormalization group methods complementarily, we calculate the atom density profile from the ground state many-body wavefunction as a function of attractive interaction strength for various population imbalances. The numerical results reveal that although a phase separation between the superfluid core and the shell cloud of excess atoms occurs as observed in experiments without the optical lattice, the population imbalance generally remains in the core region in contrast to the non-lattice cases. The essence of the numerical results in a strong attractive regime can be explained by an effective model composed of Cooper pairs and excess major fermions.
In order to demonstrate that atomic Fermi gas is a good experimental reality in studying unsolved problems in frustrated interacting-spin systems, we numerically examine the Mott core state emerged by loading two-component atomic Fermi gases on trian
We construct a two-dimensional lattice model of fermions coupled to Ising ferromagnetic critical fluctuations. Using extensive sign-problem-free quantum Monte Carlo simulations, we show that the model realizes a continuous itinerant quantum phase tra
We investigate the behavior of a $d$-$d$ transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ~1.7 eV energy transfer is measured at temperatures
In this short paper, we argue that the chiral central charge $c_-$ of a (2+1)d topological ordered state is sometimes strongly constrained by t Hooft anomaly of anti-unitary global symmetry. For example, if a (2+1)d fermionic TQFT has a time reversal
We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low densit