ﻻ يوجد ملخص باللغة العربية
Monomial mappings, $xmapsto x^n$, are topologically transitive and ergodic with respect to Haar measure on the unit circle in the complex plane. In this paper we obtain an anologous result for monomial dynamical systems over $p-$adic numbers. The process is, however, not straightforward. The result will depend on the natural number $n$. Moreover, in the $p-$adic case we never have ergodicity on the unit circle, but on the circles around the point 1.
We describe the set of all $(3,1)$-rational functions given on the set of complex $p$-adic field $mathbb C_p$ and having a unique fixed point. We study $p$-adic dynamical systems generated by such $(3,1)$-rational functions and show that the fixed po
We consider a family of $(2,1)$-rational functions given on the set of $p$-adic field $Q_p$. Each such function has a unique fixed point. We study ergodicity properties of the dynamical systems generated by $(2,1)$-rational functions. For each such f
We characterize the dynamical systems consisting of the set of 5-adic integers and polynomial maps which consist of only one minimal component.
This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob
We find the exact radius of linearization disks at indifferent fixed points of quadratic maps in $mathbb{C}_p$. We also show that the radius is invariant under power series perturbations. Localizing all periodic orbits of these quadratic-like maps we