ترغب بنشر مسار تعليمي؟ اضغط هنا

SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

200   0   0.0 ( 0 )
 نشر من قبل Kazushi Sakamoto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23 (80 pc) for the continuum and 0.33 (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.



قيم البحث

اقرأ أيضاً

156 - Satoki Matsushita 2008
We have used the Submillimeter Array (SMA) to make the first interferometric observations (beam size ~1) of the 12CO J=6-5 line and 435 micron (690 GHz) continuum emission toward the central region of the nearby ULIRG Arp 220. These observations reso lve the eastern and western nuclei from each other, in both the molecular line and dust continuum emission. At 435 micron, the peak intensity of the western nucleus is stronger than the eastern nucleus, and the difference in peak intensities is less than at longer wavelengths. Fitting a simple model to the dust emission observed between 1.3 mm and 435 micron suggests that dust emissivity power law index in the western nucleus is near unity and steeper in the eastern nucleus, about 2, and that the dust emission is optically thick at the shorter wavelength. Comparison with single dish measurements indicate that the interferometer observations are missing ~60% of the dust emission, most likely from a spatially extended component to which these observations are not sensitive. The 12CO J=6-5 line observations clearly resolve kinematically the two nuclei. The distribution and kinematics of the 12CO J=6-5 line appear to be very similar to lower J CO lies observed at similar resolution. Analysis of multiple 12CO line intensities indicates that the molecular gas in both nuclei have similar excitation conditions, although the western nucleus is warmer and denser. The excitation conditions are similar to those found in other extreme environments, including M82, Mrk 231, and BR 1202-0725. Simultaneous lower resolution observations of the 12CO, 13CO, and C18O J=2-1 lines show that the 13CO and C18O lines have similar intensities, which suggests that both of these lines are optically thick, or possibly that extreme high mass star formation has produced in an overabundance of C18O.
We present MERLIN observations of the continuum (both 1.6 and 5 GHz) and OH maser emission towards Arp220. the correct spatial configuration of the various componnents of the galaxy is revealed. In the eastern component the masers are shown to be gen erally coincident with the larger scale continuum emission; in the west, the masers and continuum do not generally arise from the same location. A velocity gradient (0.32+/-0.03km/s/pc) is found in the eastern nuclear region in MERLIN scales; this gradient is three times smaller than seen in OH and implies that the OH gas lies inside the HI. A re-analysis of previously presented global VLBI data (Lonsdale et al. 1998) reveals a very high velocity gradient (18.67+/-0.12km/s/pc) in one component, possibly the site of a heavily obscured AGN.
We report high resolution imaging of the ultraluminous infrared galaxy Arp 220 at 1.1, 1.6, and 2.22 microns with NICMOS on the HST. The diffraction-limited images at 0.1--0.2 arcsecond resolution clearly resolve both nuclei of the merging galaxy sys tem and reveal for the first time a number of luminous star clusters in the circumnuclear envelope. The morphologies of both nuclei are strongly affected by dust obscuration, even at 2.2 microns : the primary nucleus (west) presents a crescent shape, concave to the south and the secondary (eastern) nucleus is bifurcated by a dust lane with the southern component being very reddened. In the western nucleus, the morphology of the 2.2 micron emission is most likely the result of obscuration by an opaque disk embedded within the nuclear star cluster. The morphology of the central starburst-cluster in the western nucleus is consistent with either a circumnuclear ring of star formation or a spherical cluster with the bottom half obscured by the embedded dust disk. Comparison of cm-wave radio continuum maps with the near-infrared images suggests that the radio nuclei lie in the dust disk on the west and near the highly reddened southern component of the eastern complex. The radio nuclei are separated by 0.98 arcseconds (corresponding to 364 pc at 77 Mpc) and the half-widths of the infrared nuclei are approximately 0.2-0.5 arcseconds. At least 8, unresolved infrared sources -- probably globular clusters -- are also seen in the circumnuclear envelope at radii 2-7 arcseconds . Their near-infrared colors do not significantly constrain their ages.
We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The 13C isotopic substitutions of HC3N and transitions from H2(18)O, 29SiO, and CH2CO are detected for the first time outside the Galaxy. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9x1.9 which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (~10^-5), derived from the isotopologue H2(18)O, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require ~2-8x10^6 hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
We present a new 0.9 resolution 3.29 micron narrowband image of the reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is brightest in narrow filaments NW of the illuminating star. These filaments have been seen in images of K, molecular hydrogen emission lines, the 6.2 and 11.3 micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but distinctly between the filaments and the star. The 3.29 micron image is in contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an extended emission peak midway between the filaments and the star, and much fainter emission near the filaments. The [2.18]-[3.29] color shows a wide variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing distance from the star, up until the filament, suggesting that the main difference between the spatial distributions of the 2 micron continuum and the the 3.29 micron emission is related to the incident stellar flux. Our result suggests that the 3.29 micron IEF carriers are likely to be distinct from, but related to, the 2 micron continuum emitters. Our finding also imply that, in NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen, but that both can survive in HI or molecular hydrogen. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا