ترغب بنشر مسار تعليمي؟ اضغط هنا

Survival of charmonia above Tc in anisotropic lattice QCD

165   0   0.0 ( 0 )
 نشر من قبل Hideaki Iida
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف H.Iida




اسأل ChatGPT حول البحث

We find a strong evidence for the survival of $J/Psi$ and $eta_c$ as spatially-localized $cbar c$ (quasi-)bound states above the QCD critical temperature $T_c$, by investigating the boundary-condition dependence of their energies and spectral functions. In a finite-volume box, there arises a boundary-condition dependence for spatially spread states, while no such dependence appears for spatially compact states. In lattice QCD, we find almost {it no} spatial boundary-condition dependence for the energy of the $cbar c$ system in $J/Psi$ and $eta_c$ channels for $Tsimeq(1.11-2.07)T_c$. We also investigate the spectral function of charmonia above $T_c$ in lattice QCD using the maximum entropy method (MEM) in terms of the boundary-condition dependence. There is {it no} spatial boundary-condition dependence for the low-lying peaks corresponding to $J/Psi$ and $eta_c$ around 3GeV at $1.62T_c$. These facts indicate the survival of $J/Psi$ and $eta_c$ as compact $cbar c$ (quasi-)bound states for $T_c < T < 2T_c$.



قيم البحث

اقرأ أيضاً

The spectrum of charmonium resonances contains a number of unanticipated states along with several conventional quark-model excitations. The hadrons of different quantum numbers $J^P$ appear in a fairly narrow energy band, where $J^P$ refers to the s pin-parity of a hadron at rest. This poses a challenge for Lattice QCD studies of (coupled-channel) meson-meson scattering aimed at the determination of scattering amplitudes and resonance pole positions. A wealth of information for this purpose can be obtained from the lattice spectra in frames with nonzero total momentum. These are particularly dense since hadrons with different $J^P$ contribute to any given lattice irreducible representation. This is because $J^P$ is not a good quantum number in flight, and also because the continuum symmetry is reduced on the lattice. In this paper we address the assignment of the underlying continuum $J^P$ quantum numbers to charmonia in flight using a $N_f = 2 + 1$ CLS ensemble. As a first step, we apply the single-hadron approach, where only interpolating fields of quark-antiquark type are used. The approach follows techniques previously applied to the light meson spectrum by the Hadron Spectrum Collaboration. The resulting spectra of charmonia with assigned $J^P$ will provide valuable information for the parameterization of (resonant) amplitudes in future determinations of resonance properties with lattice QCD.
122 - G. Aarts , S. Kim , M. P. Lombardo 2010
We study the temperature dependence of bottomonium for temperatures in the range $0.4 T_c < T < 2.1 T_c$, using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for $N_f=2$ light flavors on a highly anisotro pic lattice. We find that the $Upsilon$ is insensitive to the temperature in this range, while the $chi_b$ propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behaviour consistent with nearly-free dynamics at $T simeq 2 T_c$.
336 - M. Asakawa , T. Hatsuda 2003
Analyzing correlation functions of charmonia at finite temperature ($T$) on $32^3times(32-96)$ anisotropic lattices by the maximum entropy method (MEM), we find that $J/psi$ and $eta_c$ survive as distinct resonances in the plasma even up to $T simeq 1.6 T_c$ and that they eventually dissociate between $1.6 T_c$ and $1.9 T_c$ ($T_c$ is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in the MEM analysis is also emphasized.
We study negative-parity baryon spectra in quenched anisotropic lattice QCD. The negative-parity baryons are measured as the parity partner of the ground-state baryons. In addition to the flavor octet and decuplet baryons, we pay much attention to th e flavor-singlet negative-parity baryon as a three-quark state and compare it with the Lambda(1405) baryon. Numerical results of the flavor octet and decuplet negative-parity baryon masses are close to experimental values of lowest-lying negative-parity baryons, while the flavor-singlet baryon is much heavier than Lambda(1405). This indicates that the Lambda(1405) would be a multi-quark state such as the N-Kbar molecule rather than the flavor-singlet 3 quark state.
A colorless c-cbar dipole emerging from a heavy ion collision and developing the charmonium wave function can be broken-up by final state interactions (FSI) propagating through the hot medium created in the collision. We single out two mechanisms of charmonium attenuation: (i) Debye color screening, called melting; and (ii) color-exchange interaction with the medium, called absorption. The former problem has been treated so far only for charmonia at rest embedded in the medium, while in practice their transverse momenta at the LHC are quite high, <p_T^2>=7-10 GeV^2. We demonstrate that a c-cbar dipole may have a large survival probability even at infinitely high temperature. We develop a procedure of Lorentz boosting of the Schroedinger equation to a moving reference frame and perform the first realistic calculations of the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. These effects are found to have comparable magnitudes. We also calculated the FSI suppression factor for the radial excitation psi(2S) and found it to be stronger than for J/psi, except large p_T, where psi(2S) is relatively enhanced. The azimuthal asymmetry parameter v_2 is also calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا