ترغب بنشر مسار تعليمي؟ اضغط هنا

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

276   0   0.0 ( 0 )
 نشر من قبل David Bennett
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.



قيم البحث

اقرأ أيضاً

298 - Subo Dong , I.A. Bond , A. Gould 2008
We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramat ic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (Deltachi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.
268 - N. Miyake , T. Sumi , Subo Dong 2010
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlen sing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^{+1.2}_{-0.6} AU and a distance to the planetary system of D_L = 6.1^{+1.1}_{-1.2} kpc. This separation is ~ 2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing.
We report the discovery of a gas giant planet orbiting a low-mass host star in the microlensing event MOA-bin-29 that occurred in 2006. We find five degenerate solutions with the planet/host-star mass ratio of $q sim 10^{-2}$. The Einstein radius cro ssing time of all models are relatively short ($sim 4-7$ days), which indicates that the mass of host star is likely low. The measured lens-source proper motion is $5-9$ ${rm mas} {rm yr}^{-1}$ depending on the models. Since only finite source effects are detected, we conduct a Bayesian analysis in order to obtain the posterior probability distribution of the lens physical properties. As a result, we find the lens system is likely to be a gas giant orbiting a brown dwarf or a very late M-dwarf in the Galactic bulge. The probability distributions of the physical parameters for the five degenerate models are consistent within the range of error. By combining these probability distributions, we conclude that the lens system is a gas giant with a mass of $M_{rm p} = 0.63^{+1.13}_{-0.39} M_{rm Jup}$ orbiting a brown dwarf with a mass of $M_{rm h} = 0.06^{+0.11}_{-0.04} M_odot$ at a projected star-planet separation of $r_perp = 0.53^{+0.89}_{-0.18} {rm au}$. The lens distance is $D_{rm L} = 6.89^{+1.19}_{-1.19} {rm kpc}$, i.e., likely within the Galactic bulge.
We present microlensing planet OGLE-2017-BLG-0173Lb, with planet-host mass ratio either $qsimeq 2.5times 10^{-5}$ or $qsimeq 6.5times 10^{-5}$, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, $Deltachi^2 sim 10,000$, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called Hollywood event. The factor $sim 2.5$ offset in $q$ arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub Cannae and von Schlieffen, respectively. This degeneracy is accidental in that it arises from gaps in the data. Nevertheless, the fact that it appears in a $Deltachi^2=10,000$ planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of $3times 10^{-6}$. This formalism also enables an analytic understanding of the factor $sim 2.5$ offset in $q$ between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host-mass, system distance, and planet-host projected separation are $M=0.39^{+0.40}_{-0.24},M_odot$, $D_L=4.8^{+1.5}_{-1.8},kpc$, and $a_perp=3.8pm 1.6,au$. The two estimates of the planet mass are $m_p=3.3^{+3.8}_{-2.1},M_oplus$ and $m_p=8^{+11}_{-6},M_oplus$. The measured lens-source relative proper motion $mu=6,masyr$ will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow to measure the host mass but probably cannot resolve the planet-host mass-ratio degeneracy.
We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The ana lysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baades Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the microlens parallax effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models, and their influence onto the final physical parameters estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا