We study the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for flat, $k=0$, Friedmann-Robertson-Walker (FRW) universes. When the only matter is a cosmological constant, the nonlinearity can provide a barrier that screens the original Big Bang, leading to the quantum creation of a universe through tunneling just as in the $k=1$ case. When the matter is instead a free massless scalar field, the nonlinearity can again prevent a contracting classical universe from reaching zero size by creating a bounce. Our studies here are self-consistent to leading order in perturbation theory for the nonlinear effects.