ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for New Physics with the BEACON Mission

211   0   0.0 ( 0 )
 نشر من قبل Slava G. Turyshev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the frame-dragging and geodetic precessions in the Earths rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravitys non-linear effects on light and corresponding 2nd order spatial metrics effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. BEACON will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.



قيم البحث

اقرأ أيضاً

The Levitated Sensor Detector (LSD) is a compact resonant gravitational-wave (GW) detector based on optically trapped dielectric particles that is under construction. The LSD sensitivity has more favorable frequency scaling at high frequencies compar ed to laser interferometer detectors such as LIGO. We propose a method to substantially improve the sensitivity by optically levitating a multi-layered stack of dielectric discs. These stacks allow the use of a more massive levitated object while exhibiting minimal photon recoil heating due to light scattering. Over an order of magnitude of unexplored frequency space for GWs above 10 kHz is accessible with an instrument 10 to 100 meters in size. Particularly motivated sources in this frequency range are gravitationally bound states of QCD axions with decay constant near the grand unified theory (GUT) scale that form through black hole superradiance and annihilate to GWs. The LSD is also sensitive to GWs from binary coalescence of sub-solar-mass primordial black holes and as-yet unexplored new physics in the high-frequency GW window.
Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the ch ances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.
60 - Oliver Preuss 2004
The coupling of the electromagnetic field directly with gravitational gauge fields leads to new physical effects that can be tested using astronomical data. Here we consider a particular case for closer scrutiny, a specific nonminimal coupling of tor sion to electromagnetism, which enters into a metric-affine geometry of space-time. We show that under the assumption of this nonminimal coupling, spacetime is birefringent in the presence of such a gravitational field. This leads to the depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf ${RE J0317-853}$ to set strong constraints on the essential coupling constant for this effect, giving $k^2 lsim (19 {m})^2 $.
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches fo r spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We organize these directions through a science-first approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا