ﻻ يوجد ملخص باللغة العربية
Given a collection of computational models that all estimate values of the same natural process, we compare the performance of the average of the collection to the individual member whose estimates are nearest a given set of observations. Performance is the ability of a model, or average, to reproduce a sequence of observations of the process. We identify a condition that determines if a single model performs better than the average. That result also yields a necessary condition for when the average performs better than any individual model. We also give sharp bounds for the performance of the average on a given interval. Since the observation interval is fixed, performance is evaluated in a vector space, and we can add intuition to our results by explaining them geometrically. We conclude with some comments on directions statistical tests of performance might take.
We introduce a multiscale test statistic based on local order statistics and spacings that provides simultaneous confidence statements for the existence and location of local increases and decreases of a density or a failure rate. The procedure provi
This paper deals with order identification for nested models in the i.i.d. framework. We study the asymptotic efficiency of two generalized likelihood ratio tests of the order. They are based on two estimators which are proved to be strongly consiste
Kernel-based non-linear dimensionality reduction methods, such as Local Linear Embedding (LLE) and Laplacian Eigenmaps, rely heavily upon pairwise distances or similarity scores, with which one can construct and study a weighted graph associated with
Here, in this paper it has been considered a sub family of exponential family. Maximum likelihood estimations (MLE) for the parameter of this family, probability density function, and cumulative density function based on a sample and based on lower r
We assume a spatial blind source separation model in which the observed multivariate spatial data is a linear mixture of latent spatially uncorrelated Gaussian random fields containing a number of pure white noise components. We propose a test on the