ﻻ يوجد ملخص باللغة العربية
A salient feature of the Schr{o}dinger equation is that the classical radial momentum term $p_{r}^{2}$ in polar coordinates is replaced by the operator $hat{P}^{dagger}_{r} hat{P}_{r}$, where the operator $hat{P}_{r}$ is not hermitian in general. This fact has important implications for the path integral and semi-classical approximations. When one defines a formal hermitian radial momentum operator $hat{p}_{r}=(1/2)((frac{hat{vec{x}}}{r}) hat{vec{p}}+hat{vec{p}}(frac{hat{vec{x}}}{r}))$, the relation $hat{P}^{dagger}_{r} hat{P}_{r}=hat{p}_{r}^{2}+hbar^{2}(d-1)(d-3)/(4r^{2})$ holds in $d$-dimensional space and this extra potential appears in the path integral formulated in polar coordinates. The extra potential, which influences the classical solutions in the semi-classical treatment such as in the analysis of solitons and collective modes, vanishes for $d=3$ and attractive for $d=2$ and repulsive for all other cases $dgeq 4$. This extra term induced by the non-hermitian operator is a purely quantum effect, and it is somewhat analogous to the quantum anomaly in chiral gauge theory.
In this paper, we discuss tensor network descriptions of AdS/CFT from two different viewpoints. First, we start with an Euclidean path-integral computation of ground state wave functions with a UV cut off. We consider its efficient optimization by ma
We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into
The spin of a free electron is stable but its position is not. Recent quantum information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown that the Feynman emph{position} path integral can be mathematically defined as a product of
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The
We consider expressions of the form of an exponential of the sum of two non-commuting operators of a single variable inside a path integration. We show that it is possible to shift one of the non-commuting operators from the exponential to other func