ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED

203   0   0.0 ( 0 )
 نشر من قبل Frank Deppe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting qubits behave as artificial two-level atoms and are used to investigate fundamental quantum phenomena. In this context, the study of multi-photon excitations occupies a central role. Moreover, coupling superconducting qubits to on-chip microwave resonators has given rise to the field of circuit QED. In contrast to quantum-optical cavity QED, circuit QED offers the tunability inherent to solid-state circuits. In this work, we report on the observation of key signatures of a two-photon driven Jaynes-Cummings model, which unveils the upconversion dynamics of a superconducting flux qubit coupled to an on-chip resonator. Our experiment and theoretical analysis show clear evidence for the coexistence of one- and two-photon driven level anticrossings of the qubit-resonator system. This results from the symmetry breaking of the system Hamiltonian, when parity becomes a not well-defined property. Our study provides deep insight into the interplay of multiphoton processes and symmetries in a qubit-resonator system.



قيم البحث

اقرأ أيضاً

Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to microwave resonators, the time has come to consider the generation and characterization of propagating quantum microwaves. In this paper, we design a key ingredient that will prove essential in the general frame: a swtichable coupling between qubit(s) and transmission line(s) that can work in the ultrastrong coupling regime, where the coupling strength approaches the qubit transition frequency. We propose several setups where two or more loops of Josephson junctions are directly connected to a closed (cavity) or open transmission line. We demonstrate that the circuit induces a coupling that can be modulated in strength and type. Given recent studies showing the accessibility to the ultrastrong regime, we expect our ideas to have an immediate impact in ongoing experiments.
We present an ideal realization of the Tavis-Cummings model in the absence of atom number and coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits at fixed positions into a transmission line resonator. Mea suring the vacuum Rabi mode splitting with one, two and three qubits strongly coupled to the cavity field, we explore both bright and dark dressed collective multi-qubit states and observe the discrete square root of N scaling of the collective dipole coupling strength. Our experiments demonstrate a novel approach to explore collective states, such as the W-state, in a fully globally and locally controllable quantum system. Our scalable approach is interesting for solid-state quantum information processing and for fundamental multi-atom quantum optics experiments with fixed atom numbers.
We study multiphoton blockade and photon-induced tunneling effects in the two-photon Jaynes-Cummings model, where a single-mode cavity field and a two-level atom are coupled via a two-photon interaction. We consider both the cavity-field-driving and atom-driving cases, and find that single-photon blockade and photon-induced tunneling effects can be observed when the cavity mode is driven, while the two-photon blockade effect appears when the atom is driven. For the atom-driving case (the two-photon transition process), we present a criterion of the correlation functions for the multiphoton blockade effect. Specifically, we show that quantum interference can enhance the photon blockade effect in the single-photon cavity-field-driving case. Our results are confirmed by analytically and numerically calculating the correlation function of the cavity-field mode. Our work has potential applications in quantum information processing and paves the way for the study of multiphoton quantum coherent devices.
219 - V. Peano , M. Thorwart 2010
We analyze the driven resonantly coupled Jaynes-Cummings model in terms of a quasienergy approach by switching to a frame rotating with the external modulation frequency and by using the dressed atom picture. A quasienergy surface in phase space emer ges whose level spacing is governed by a rescaled effective Planck constant. Moreover, the well-known multiphoton transitions can be reinterpreted as resonant tunneling transitions from the local maximum of the quasienergy surface. Most importantly, the driving defines a quasienergy well which is nonperturbative in nature. The quantum mechanical quasienergy state localized at its bottom is squeezed. In the Purcell limited regime, the potential well is metastable and the effective local temperature close to its minimum is uniquely determined by the squeezing factor. The activation occurs in this case via dressed spin flip transitions rather than via quantum activation as in other driven nonlinear quantum systems such as the quantum Duffing oscillator. The local maximum is in general stable. However, in presence of resonant coherent or dissipative tunneling transitions the system can escape from it and a stationary state arises as a statistical mixture of quasienergy states being localized in the two basins of attraction. This gives rise to a resonant or an antiresonant nonlinear response of the cavity at multiphoton transitions. The model finds direct application in recent experiments with a driven superconducting circuit QED setup.
We consider the Jaynes-Cummings model of a single quantum spin $s$ coupled to a harmonic oscillator in a parameter regime where the underlying classical dynamics exhibits an unstable equilibrium point. This state of the model is relevant to the physi cs of cold atom systems, in non-equilibrium situations obtained by fast sweeping through a Feshbach resonance. We show that in this integrable system with two degrees of freedom, for any initial condition close to the unstable point, the classical dynamics is controlled by a singularity of the focus-focus type. In particular, it displays the expected monodromy, which forbids the existence of global action-angle coordinates. Explicit calculations of the joint spectrum of conserved quantities reveal the monodromy at the quantum level, as a dislocation in the lattice of eigenvalues. We perform a detailed semi-classical analysis of the associated eigenstates. Whereas most of the levels are well described by the usual Bohr-Sommerfeld quantization rules, properly adapted to polar coordinates, we show how these rules are modified in the vicinity of the critical level. The spectral decomposition of the classically unstable state is computed, and is found to be dominated by the critical WKB states. This provides a useful tool to analyze the quantum dynamics starting from this particular state, which exhibits an aperiodic sequence of solitonic pulses with a rather well defined characteristic frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا