ﻻ يوجد ملخص باللغة العربية
This work describes an innovative concept for the development of organized molecular systems thanks to the template effect of the pre-structured semi-conductive SmSi(111) interface. This substrate was selected because Sm deposition in the submonolayer range leads to a 8x2-reconstruction, which is a well-defined one-dimensional semi-metallic structure. Adsorption of aromatic molecules (1,4-di-(9-ethynyltriptycenyl)-benzene) on SmSi(111)-8x2 and Si(111)-7x7 interfaces has been investigated by scanning tunneling microscopy (STM) at room temperature. Density functional theory (DFT) and semi-empirical (ASED+) calculations have been performed to define the nature of the molecular adsorption sites of the target molecule on SmSi as well as their self-alignment on this interface. Experimental data and theoretical results are in good agreement.
We investigate the molecular acceptors 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA), 2,3,5,6-tetra uoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), and 4,5,9,10-pyrenetetraone (PYTON) on Ag(111) using densityfunctional theory. For two gr
The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate wit
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physic
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up QI effects from single molecules to parallel arrays of molecul