ﻻ يوجد ملخص باللغة العربية
The motion of an optically trapped sphere constrained by the vicinity of a wall is investigated at times where hydrodynamic memory is significant. First, we quantify, in bulk, the influence of confinement arising from the trapping potential on the spheres velocity autocorrelation function $C(t)$. Next, we study the splitting of $C(t)$ into $C_parallel(t)$ and $C_perp(t)$, when the sphere is approached towards a surface. Thereby, we monitor the crossover from a slow $t^{-3/2}$ long-time tail, away from the wall, to a faster $t^{-5/2}$ decay, due to the subtle interplay between hydrodynamic backflow and wall effects. Finally, we discuss the resulting asymmetric time-dependent diffusion coefficients.
In living cells, proteins combine 3D bulk diffusion and 1D sliding along the DNA to reach a target faster. This process is known as facilitated diffusion, and we investigate its dynamics in the physiologically relevant case of confined DNA. The confi
We study the pressure-driven flow of concentrated colloids confined in glass micro-channels at the single particle level using fast confocal microscopy. For channel to particle size ratios $a/bar{D} lesssim 30$, the flow rate of the suspended particl
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition (MCT) we calculate the self-nonergodicit
We explore the influence of particle shape on the behavior of evaporating drops. A first set of experiments discovered that particle shape modifies particle deposition after drying. For sessile drops, spheres are deposited in a ring-like stain, while
Macromolecular diffusion in dense colloidal suspensions is an intriguing topic of interdisciplinary relevance in Science and Engineering. While significant efforts have been undertaken to establish the impact of crowding on the dynamics of macromolec