ﻻ يوجد ملخص باللغة العربية
In a recent paper (arXiv: 0801.4566) it was shown that all global energy eigenstates of asymptotically $AdS_3$ chiral gravity have non-negative energy at the linearized level. This result was questioned (arXiv: 0803.3998) by Carlip, Deser, Waldron and Wise (CDWW), who work on the Poincare patch. They exhibit a linearized solution of chiral gravity and claim that it has negative energy and is smooth at the boundary. We show that the solution of CDWW is smooth only on that part of the boundary of $AdS_3$ included in the Poincare patch. Extended to global $AdS_3$, it is divergent at the boundary point not included in the Poincare patch. Hence it is consistent with the results of (arXiv: 0801.4566).
We review some theoretical and phenomenological aspects of massive gravities in 4 dimensions. We start from the Fierz--Pauli theory with Lorentz-invariant mass terms and then proceed to Lorentz-violating masses. Unlike the former theory, some models
We study quantum corrections to holographic entanglement entropy in AdS$_3$/CFT$_2$; these are given by the bulk entanglement entropy across the Ryu-Takayanagi surface for all fields in the effective gravitational theory. We consider bulk $U(1)$ gaug
All quadratic translation- and gauge-invariant photon operators for Lorentz breakdown are included into the Stueckelberg Lagrangian for massive photons in a generalized xi-gauge. The corresponding dispersion relation and tree-level propagator are det
We consider the conversion of gravitons into photons in the $ TE_{mo} $ mode. Cross sections in different directions are given.
It is well known that gravitons can convert into photons, and vice versa, in the presence of cosmological magnetic fields. We study this conversion process in the context of atomic dark matter scenario. In this scenario, we can expect cosmological da