ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Unitary Cocycles of E_0-semigroups

124   0   0.0 ( 0 )
 نشر من قبل Daniel Markiewicz
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper concerns the structure of the group of local unitary cocycles, also called the gauge group, of an E_0-semigroup. The gauge group of a spatial E_0-semigroup has a natural action on the set of units by operator multiplication. Arveson has characterized completely the gauge group of E_0-semigroups of type I, and as a consequence it is known that in this case the gauge group action is transitive. In fact, if the semigroup has index k, then the gauge group action is transitive on the set of k+1-tuples of appropriately normalized independent units. An action of the gauge group having this property is called k+1-fold transitive. We construct examples of E_0-semigroups of type II and index 1 which are not 2-fold transitive. These new examples also illustrate that an E_0-semigroup of type II_k need not be a tensor product of an E_0-semigroup of type II_0 and another of type I_k.



قيم البحث

اقرأ أيضاً

We consider families of E_0-semigroups continuously parametrized by a compact Hausdorff space, which are cocycle-equivalent to a given E_0-semigroup beta. When the gauge group of $beta$ is a Lie group, we establish a correspondence between such famil ies and principal bundles whose structure group is the gauge group of beta.
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp ace. We describe all q-pure E_0-semigroups of type II_0 which arise from boundary weight maps with range rank one over K. We also prove that no q-pure E_0-semigroups of type II_0 arise from boundary weight maps with range rank two over K. In the case when K is finite-dimensional, we provide a criterion to determine if two boundary weight maps of range rank one over K give rise to cocycle conjugate q-pure E_0-semigroups.
The gauge group is computed explicitly for a family of E_0-semigroups of type II_0 arising from the boundary weight double construction introduced earlier by Jankowski. This family contains many E_0-semigroups which are not cocycle cocycle conjugate to any examples whose gauge groups have been computed earlier. Further results are obtained regarding the classification up to cocycle conjugacy and up to conjugacy for boundary weight doubles $(phi, u)$ in two separate cases: first in the case when $phi$ is unital, invertible and q-pure and $ u$ is any type II Powers weight, and secondly when $phi$ is a unital $q$-positive map whose range has dimension one and $ u(A) = (f, Af)$ for some function f such that $(1-e^{-x})^{1/2}f(x) in L^2(0,infty)$. All E_0-semigroups in the former case are cocycle conjugate to the one arising simply from $ u$, and any two E_0-semigroups in the latter case are cocycle conjugate if and only if they are conjugate.
A CP-semigroup is aligned if its set of trivially maximal subordinates is totally ordered by subordination. We prove that aligned spatial E_0-semigroups are prime: they have no non-trivial tensor product decompositions up to cocycle conjugacy. As a c onsequence, we establish the existence of uncountably many non-cocycle conjugate E_0-semigroups of type II_0 which are prime.
A triangular limit algebra A is isometrically isomorphic to the tensor algebra of a C*-correspondence if and only if its fundamental relation R(A) is a tree admitting a $Z^+_0$-valued continuous and coherent cocycle. For triangular limit algebras whi ch are isomorphic to tensor algebras, we give a very concrete description for their defining C*-correspondence and we show that it forms a complete invariant for isometric isomorphisms between such algebras. A related class of operator algebras is also classified using a variant of the Aho-Hopcroft-Ullman algorithm from computer aided graph theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا