ﻻ يوجد ملخص باللغة العربية
Standard parton distribution functions contain neither information on the correlations between partons nor on their transverse motion, then a vital knowledge about the three dimensional structure of the nucleon is lost. Hard exclusive processes, in particular DVCS, are essential reactions to go beyond this standard picture. In the following, we examine the most recent data and their implication on the quarks/gluons imaging (tomography) of the nucleon.
Recent results from the Deeply Virtual Compton Scattering (DVCS) program at Jefferson Lab will be presented. Approved dedicated DVCS experiments at 6 GeV and plans for the 12 GeV upgrade will be discussed.
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final p
At moderately low momentum transfer (-t up to 1 GeV^2) the coupling to the vector meson production channels gives the dominant contribution to real Compton and deeply virtual Compton scattering (DVCS). Starting from a Regge Pole approach that success
An overview is given about the capabilities provided by the JLab 12 GeV Upgrade to measure deeply virtual exclusive processes with high statistics and covering a large kinematics range in the parameters that are needed to allow reconstruction of a sp
A factorized Regge-pole model for deeply virtual Compton scattering is suggested. The use of an effective logarithmic Regge-Pomeron trajectory provides for the description of both ``soft (small $|t|$) and ``hard (large $|t|$) dynamics. The model cont