ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-range correlations and shell structure of medium-mass nuclei

570   0   0.0 ( 0 )
 نشر من قبل Luigi Coraggio
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The single-particle spectrum of the two nuclei 133Sb and 101Sn is studied within the framework of the time-dependent degenerate linked-diagram perturbation theory starting from a class of onshell-equivalent realistic nucleon-nucleon potentials. These potentials are derived from the CD-Bonn interaction by using the so-called V-low-k approach with various cutoff momenta. The results obtained evidence the crucial role of short-range correlations in producing the correct 2s1d0g0h shell structure.



قيم البحث

اقرأ أيضاً

The effects of short range correlations in lepton and hadron scattering off nuclei at medium and high energies are discussed.
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of sca les stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean- field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding the role of the QCD in generating nuclear forces at short distances as well as understa nding the dynamics of the super-dense cold nuclear matter relevant to the interior of neutron stars. With an emergence of high energy electron and proton beams there is a significant recent progress in high energy nuclear scattering experiments aimed at studies of short-range structure of nuclei. This in turn stimulated new theoretical studies resulting in the observation of several new phenomena specific to the short range structure of nuclei. In this work we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and their importance for advancing our understanding of the dynamics of nuclear interactions at small distances.
High-energy scattering processes, such as deep inelastic scattering (DIS) and quasielastic (QE) scattering provide a wealth of information about the structure of atomic nuclei. The remarkable discovery of the empirical linear relationship between the slope of the European Muon Collaboration (EMC) effect in DIS and the short-range-correlation (SRC) scaling factors $a_2$ in QE kinematics is naturally explained in terms of scale separation in effective field theory. This explanation has powerful consequences, allowing us to calculate and predict SRC scaling factors from ab initio low-energy nuclear theory. We present ab initio calculations of SRC scaling factors for a nucleus $A$ relative to the deuteron $a_2(A/d)$ and relative to $^3rm He$ $a_2(A/^3rm He)$ in light and medium-mass nuclei. Our framework further predicts that the EMC effect and SRC scaling factors have minimal or negligible isovector corrections.
Novel processes probing the decay of nucleus after removal of a nucleon with momentum larger than Fermi momentum by hard probes finally proved unambiguously the evidence for long sought presence of short-range correlations (SRCs) in nuclei. In combin ation with the analysis of large $Q^2$, A(e,e)X processes at $x>1$ they allow us to conclude that (i) practically all nucleons with momenta $ge$ 300 MeV/c belong to SRCs, consisting mostly of two nucleons, ii) probability of such SRCs in medium and heavy nuclei is $sim 25%$, iii) a fast removal of such nucleon practically always leads to emission of correlated nucleon with approximately opposite momentum, iv) proton removal from two-nucleon SRCs in 90% of cases is accompanied by a removal of a neutron and only in 10% by a removal of another proton. We explain that observed absolute probabilities and the isospin structure of two nucleon SRCs confirm the important role that tensor forces play in internucleon interactions. We find also that the presence of SRCs requires modifications of the Landau Fermi liquid approach to highly asymmetric nuclear matter and leads to a significantly faster cooling of cold neutron stars with neutrino cooling operational even for $N_p/N_n le 0.1$. The effect is even stronger for the hyperon stars. Theoretical challenges raised by the discovered dominance of nucleon degrees of freedom in SRCs and important role of the spontaneously broken chiral symmetry in quantum chromodynamics (QCD) in resolving them are considered. We also outline directions for future theoretical and experimental studies of the physics relevant for SRCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا