ﻻ يوجد ملخص باللغة العربية
We report specific heat measurements at magnetic fields up to 20 T on the recently discovered superconductor SmFeAsO$_{0.85}$F$_{0.15}$. The B-T diagram of a polycrystalline SmFeAsO$_{0.85}$F$_{0.15}$ sample with T$_c$ = 46 K was investigated. The temperature dependence of B$_{c2}$ was extracted from the specific heat curves, the corresponding B$_{c2}$(T = 0) value derived from the Werthamer-Helfand-Hohenberg formula being 150 T. Based on magnetization measurements up to 9 T, a first estimation of the field dependence of the inductive critical current J$_c$ is given. Evidence for granularity is found. The presence of a peak effect is reported, suggesting a crossover in the vortex dynamics, in analogy to the behaviour observed in high T$_c$ cuprates.
The electronic structure of the new superconductor, SmO$_{1-x}$F$_x$FeAs ($x=0.15$), has been studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative flat distribution of th
We report here that magnetic fields of almost 34 T, far above the upper 24 T limit of Nb3Sn, can be generated using a multifilament round wire conductor made of the high temperature cuprate superconductor Bi2Sr2CaCu2O8-x (Bi-2212). A remarkable attri
We measure magnetotransport of F doped SmFeAsO samples up to 28T and we extract the upper critical fields, using different criteria. In order to circumvent the problem of criterion-dependence Hc2 values, we suggest a thermodynamic estimation of the u
We report the temperature dependencies of the upper critical fields $H_{ctext{2}}^{text{c}}(T)$ parallel to the c-axis and $H_{ctext{2}}^{text{ab}}(T)$ parallel to the ab-plane of single crystalline CaKFe$_4$As$_4$ inferred from the measurements of t
The mutual interaction between Cooper pairs is proposed as a mechanism for the superconducting state. Above $T_c$, pre-existing but fluctuating Cooper pairs give rise to the unconventional {it pseudogap} (PG) state, well-characterized by experiment.