ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of CXOU J010043.1-721134: the first deep look at the soft X-ray emission of a magnetar

186   0   0.0 ( 0 )
 نشر من قبل Tiengo Andrea
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Tiengo




اسأل ChatGPT حول البحث

We present the analysis of six XMM-Newton observations of the Anomalous X-ray Pulsar CXOU J010043.1-721134, the magnetar candidate characterized by the lowest interstellar absorption. In contrast with all the other magnetar candidates, its X-ray spectrum cannot be fit by an absorbed power-law plus blackbody model. The sum of two (absorbed) blackbody components with kT1=0.30 keV and kT2=0.7 keV gives an acceptable fit, and the radii of the corresponding blackbody emission regions are R1=12.1 km and R2=1.7 km. The former value is consistent with emission from a large fraction of a neutron star surface and, given the well known distance of CXOU J010043.1-721134, that is located in the Small Magellanic Cloud, it provides the most constraining lower limit to a magnetar radius ever obtained. A more physical model, where resonant cyclotron scattering in the magnetar magnetosphere is taken into account, has also been successfully applied to this source.



قيم البحث

اقرأ أيضاً

We observe the magnetar CXOU J171405.7-381031 with XMM-Newton and obtain the most reliable X-ray spectral parameters for this magnetar. After removing the flux from the surrounding supernova remnant CTB~37B, the radiation of CXOU J171405.7-381031 is best described by a two-component model, consisting of a blackbody and power law. We obtain a blackbody temperature of 0.58^{+0.03}_{-0.03} keV, photon index of 2.15^{+0.62}_{-0.68}, and unabsorbed 2-10 keV flux of 2.33^{+0.02}_{-0.02} x 10^{-12} erg cm^{-2} s^{-1}. These new parameters enable us to compare CXOU 171405.7-381031 with other magnetars, and it is found that the luminosity, temperature and the photon index of CXOU J171405.7-381031 are aligned with the known trend among the magnetar population with a slightly higher temperature, which could be caused by its young age. All the magnetars with a spin-down age of less than 1~kyr show time variation or bursts except for CXOU J171405.7-381031. We explore the time variability for ten observations in between 2006 and 2015, but there is no variation larger than sim 10%.
Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.
92 - L. Ballo 2017
We report on the X-ray monitoring programme (covering slightly more than 11 days) carried out jointly by XMM-Newton and NuSTAR on the intermediate Seyfert galaxy Mrk 915. The light curves extracted in different energy ranges show a variation in inten sity but not a significant change in spectral shape. The X-ray spectra reveal the presence of a two-phase warm absorber: a fully covering mildly ionized structure [log xi/(erg cm/s)~2.3, NH~1.3x10^21 cm-2] and a partial covering (~90 per cent) lower ionized one [log xi/(erg cm/s)~0.6, NH~2x10^22 cm-2]. A reflection component from distant matter is also present. Finally, a high-column density (NH~1.5x10^23 cm-2) distribution of neutral matter covering a small fraction of the central region is observed, almost constant, in all observations. Main driver of the variations observed between the datasets is a decrease in the intrinsic emission by a factor of ~1.5. Slight variations in the partial covering ionized absorber are detected, while the data are consistent with no variation of the total covering absorber. The most likely interpretation of the present data locates this complex absorber closer to the central source than the narrow line region, possibly in the broad line region, in the innermost part of the torus, or in between. The neutral obscurer may either be part of this same stratified structure or associated with the walls of the torus, grazed by (and partially intercepting) the line of sight.
80 - K.L. Page 2004
XMM-Newton observations of seven QSOs are presented and the EPIC spectra analysed. Five of the AGN show evidence for Fe K-alpha emission, with three being slightly better fitted by lines of finite width; at the 99 per cent level they are consistent w ith being intrinsically narrow, though. The broad-band spectra can be well modelled by a combination of different temperature blackbodies with a power-law, with temperatures between kT ~ 100-300 eV. On the whole, these temperatures are too high to be direct thermal emission from the accretion disc, so a Comptonization model was used as a more physical parametrization. The Comptonizing electron population forms the soft excess emission, with an electron temperature of ~ 120-680 eV. Power-law, thermal plasma and disc blackbody models were also fitted to the soft X-ray excess. Of the sample, four of the AGN are radio-quiet and three radio-loud. The radio-quiet QSOs may have slightly stronger soft excesses, although the electron temperatures cover the same range for both groups.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2 .0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا