ﻻ يوجد ملخص باللغة العربية
A Voigt profile function emerges in several physical investigations (e.g. atmospheric radiative transfer, astrophysical spectroscopy, plasma waves and acoustics) and it turns out to be the convolution of the Gaussian and the Lorentzian densities. Its relation with a number of special functions has been widely derived in literature starting from its Fourier type integral representation. The main aim of the present paper is to introduce the Mellin-Barnes integral representation as a useful tool to obtain new analytical results. Here, starting from the Mellin-Barnes integral representation, the Voigt function is expressed in terms of the Fox H-function which includes representations in terms of the Meijer G-function and previously well-known representations with other special functions.
We discuss the structure of the framed moduli space of Bogomolny monopoles for arbitrary symmetry breaking and extend the definition of its stratification to the case of arbitrary compact Lie groups. We show that each stratum is a union of submanifol
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian $H$ an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables $X$ and $Y$ that do not necessar
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models
We provide a simple extension of Bolthausens Morita type proof cite{Bolt2} of the replica symmetric formula for the Sherrington-Kirkpatrick (SK) model and prove the replica symmetry for all $(beta,h)$ that satisfy $beta^2 E, text{sech}^2(betasqrt{q}Z
The article presents a generalization of Sherman-Morrison-Woodbury (SMW) formula for the inversion of a matrix of the form A+sum(U)k)*V(k),k=1..N).