ﻻ يوجد ملخص باللغة العربية
Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the stars quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude $h_0$ depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances $0.18kpc$ to $0.35kpc$ from Earth, the {it maximal} $h_0$ is found to be in the range of $sim[0.4-1.5]times 10^{-24}$. This prediction serves as the first {it direct} nuclear constraint on the gravitational radiation. Its implications are discussed.
Pulsars are among the most mysterious astrophysical objects in the Universe and are believed to be rotating neutron stars formed in supernova explosions. They are unique testing grounds of dense matter theories and gravitational physics and also prov
The recent direct detection of gravitational waves (GWs) from binary black hole mergers (2016, Phys. Rev. Lett. 116, no. 6, 061102; no. 24, 241103) opens up an entirely new non-electromagnetic window into the Universe making it possible to probe phys
Nuclear-powered X-ray millisecond pulsars are the third type of millisecond pulsars, which are powered by thermonuclear fusion processes. The corresponding brightness oscillations, known as burst oscillations, are observed during some thermonuclear X
In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature
We present an analysis based on the deformed Quasi Particle Random Phase Approximation, on top of a deformed Hartree-Fock-Bogoliubov description of the ground state, aimed at studying the isoscalar monopole and quadrupole response in a deformed nucle