If $f:[a,b]to mathbb{R}$, with $a<b$, is continuous and such that $a$ and $b$ are mapped in opposite directions by $f$, then $f$ has a fixed point in $I$. Suppose that $f:mathbb{C}tomathbb{C}$ is map and $X$ is a continuum. We extend the above for certain continuous maps of dendrites $Xto D, Xsubset D$ and for positively oriented maps $f:Xto mathbb{C}, Xsubset mathbb{C}$ with the continuum $X$ not necessarily invariant. Then we show that in certain cases a holomorphic map $f:mathbb{C}tomathbb{C}$ must have a fixed point $a$ in a continuum $X$ so that either $ain mathrm{Int}(X)$ or $f$ exhibits rotation at $a$.