ﻻ يوجد ملخص باللغة العربية
We study the influence of superconducting correlations on the electronic specific heat in a diffusive superconductor-normal metal-superconductor Josephson junction. We present a description of this system in the framework of the diffusive-limit Greens function theory, taking into account finite temperatures, phase difference as well as junction parameters. We find that proximity effect may lead to a substantial deviation of the specific heat as compared to that in the normal state, and that it can be largely tuned in magnitude by changing the phase difference between the superconductors. A measurement setup to confirm these predictions is also suggested.
We theoretically propose a phase-coherent thermal circulator based on ballistic multiterminal Josephson junctions. The breaking of time-reversal symmetry by either a magnetic flux or a superconducting phase bias allows heat to flow preferentially in
We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristiv
In the classical Josephson effect the phase difference across the junction is well defined, and the supercurrent is reduced only weakly by phase diffusion. For mesoscopic junctions with small capacitance the phase undergoes large quantum fluctuations
We investigate the zero-bias behavior of Josephson junctions made of encapsulated graphene boron nitride heterostructures in the long ballistic junction regime. For temperatures down to 2.7K, the junctions appear non-hysteretic with respect to the sw