ﻻ يوجد ملخص باللغة العربية
We investigated experimentally the high-temperature electrical resistance of graphene interconnects. The test structures were fabricated using the focused ion beam from the single and bi-layer graphene produced by mechanical exfoliation. It was found that as temperature increases from 300 to 500K the resistance of the single- and bi-layer graphene interconnects drops down by 30% and 70%, respectively. The quenching and temperature dependence of the resistance were explained by the thermal generation of the electron-hole pairs and acoustic phonon scattering. The obtained results are important for the proposed applications of graphene as interconnects in integrated circuits.
The weak temperature dependence of the resistance R(T) of monolayer graphene1-3 indicates an extraordinarily high intrinsic mobility of the charge carriers. Important complications are the presence of mobile scattering centres that strongly modify ch
We have elaborately studied the electronic structure of 555-777 divacancy (DV) defected armchair edged graphene nanoribbon (AGNR) and transport properties of AGNR based two-terminal device constructed with one defected electrode and one N doped elect
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including
We investigate the transport properties of pristine zigzag-edged borophene nanoribbons (ZBNRs) of different widths, using the fist-principles calculations. We choose ZBNRs with widths of 5 and 6 as odd and even widths. The differences of the quantum
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen temperature. Under these conditions, electrons