ترغب بنشر مسار تعليمي؟ اضغط هنا

(Non-)Abelian discrete anomalies

97   0   0.0 ( 0 )
 نشر من قبل Michael Ratz
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive anomaly constraints for Abelian and non-Abelian discrete symmetries using the path integral approach. We survey anomalies of discrete symmetries in heterotic orbifolds and find a new relation between such anomalies and the so-called `anomalous U(1).



قيم البحث

اقرأ أيضاً

We review pedagogically non-Abelian discrete groups, which play an important role in the particle physics. We show group-theoretical aspects for many concrete groups, such as representations, their tensor products. We explain how to derive, conjugacy classes, characters, representations, and tensor products for these groups (with a finite number). We discussed them explicitly for $S_N$, $A_N$, $T$, $D_N$, $Q_N$, $Sigma(2N^2)$, $Delta(3N^2)$, $T_7$, $Sigma(3N^3)$ and $Delta(6N^2)$, which have been applied for model building in the particle physics. We also present typical flavor models by using $A_4$, $S_4$, and $Delta (54)$ groups. Breaking patterns of discrete groups and decompositions of multiplets are important for applications of the non-Abelian discrete symmetry. We discuss these breaking patterns of the non-Abelian discrete group, which are a powerful tool for model buildings. We also review briefly about anomalies of non-Abelian discrete symmetries by using the path integral approach.
We study the modular symmetry in magnetized D-brane models on $T^2$. Non-Abelian flavor symmetry $D_4$ in the model with magnetic flux $M=2$ (in a certain unit) is a subgroup of the modular symmetry. We also study the modular symmetry in heterotic or bifold models. The $T^2/Z_4$ orbifold model has the same modular symmetry as the magnetized brane model with $M=2$, and its flavor symmetry $D_4$ is a subgroup of the modular symmetry.
We study discrete flavor symmetries of the models based on a ten-dimensional supersymmetric Yang-Mills (10D SYM) theory compactified on magnetized tori. We assume non-vanishing non-factorizable fluxes as well as the orbifold projections. These setups allow model-building with more various flavor structures. Indeed, we show that there exist various classes of non-Abelian discrete flavor symmetries. In particular, we find that $S_3$ flavor symmetries can be realized in the framework of the magnetized 10D SYM theory for the first time.
A spontaneously broken global discrete symmetry may have pseudo Goldstone modes associated with the spontaneous breaking of the approximate continuous symmetry of the low dimension terms in the Lagrangian. These provide natural candidates for an infl aton that can generate slow roll inflation. We show that, in the case of a non Abelian discrete symmetry, the pseudo Goldstone modes readily couple to further scalar fields in a manner that the end of inflation is determined by these additional scalar fields, generating hybrid inflation. We give a simple parameterisation of the inflationary potential in this case, determine the inflationary parameters resulting, and show that phenomenological successful inflation is possible while keeping the scale of symmetry breaking sub-Plankian. Unlike natural inflation the inflation scale can be very low. We construct two simple hybrid inflation models, one non supersymmetric and one supersymmetric. In the latter case no parameters need be chosen anomalously small.
We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discret e symmetries are realized effectively from a $U(1)$ gauge theory with a permutation symmetry. We also construct a concrete model for the lepton sector based on a $U(1)^2 rtimes S_3$ symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا