ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines

91   0   0.0 ( 0 )
 نشر من قبل Davide Lazzati
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the average luminosity of X-ray flares as a function of time, for a sample of 10 long-duration gamma-ray burst afterglows. The mean luminosity, averaged over a timescale longer than the duration of the individual flares, declines as a power-law in time with index ~-1.5. We elaborate on the properties of the central engine that can produce such a decline. Assuming that the engine is an accreting compact object, and for a standard conversion factor between accretion rate and jet luminosity, the switch between a neutrino-cooled thin disk and a non-cooled thick disk takes place at the transition from the prompt to the flaring phase. We discuss the implications of this coincidence under different scenarios for the powering of the GRB outflow. We also show that the interaction of the outflow with the envelope of the progenitor star cannot produce flares out of a continuous relativistic flow, and conclude that it is the dynamics of the disk or the jet-launching mechanism that generates an intrinsically unsteady outflow on timescales much longer than the dynamical timescale of the system. This is consistent with the fact that X-ray flares are observed in short-duration GRBs as well as in long-duration ones.



قيم البحث

اقرأ أيضاً

We consider the long term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts (SGRBs). The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the promp t emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into alpha particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The time scale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system. The associated energies and time scales are consistent with those occurring in X-ray flares.
110 - Oliver Just 2021
Black-hole (BH) accretion disks formed in compact-object mergers or collapsars may be major sites of the rapid-neutron-capture (r-)process, but the conditions determining the electron fraction (Y_e) remain uncertain given the complexity of neutrino t ransfer and angular-momentum transport. After discussing relevant weak-interaction regimes, we study the role of neutrino absorption for shaping Y_e using an extensive set of simulations performed with two-moment neutrino transport and again without neutrino absorption. We vary the torus mass, BH mass and spin, and examine the impact of rest-mass and weak-magnetism corrections in the neutrino rates. We also test the dependence on the angular-momentum transport treatment by comparing axisymmetric models using the standard alpha-viscosity with viscous models assuming constant viscous length scales (l_t) and three-dimensional magnetohydrodynamic (MHD) simulations. Finally, we discuss the nucleosynthesis yields and basic kilonova properties. We find that absorption pushes Y_e towards ~0.5 outside the torus, while inside increasing the equilibrium value Y_e^eq by ~0.05--0.2. Correspondingly, a substantial ejecta fraction is pushed above Y_e=0.25, leading to a reduced lanthanide fraction and a brighter, earlier, and bluer kilonova than without absorption. More compact tori with higher neutrino optical depth, tau, tend to have lower Y_e^eq up to tau~1-10, above which absorption becomes strong enough to reverse this trend. Disk ejecta are less (more) neutron-rich when employing an l_t=const. viscosity (MHD treatment). The solar-like abundance pattern found for our MHD model marginally supports collapsar disks as major r-process sites, although a strong r-process may be limited to phases of high mass-infall rates, Mdot>~ 2 x 10^(-2) Msun/s.
329 - Y. Z. Fan 2005
We explore two possible models which might give rise to bright X-ray flares in GRBs afterglows. One is an external forward-reverse shock model, in which the shock parameters of forward/reverse shocks are taken to be quite different. The other is a so called late internal shock model, which requires a refreshed unsteady relativistic outflow generated after the prompt $gamma-$ray emission. In the forward-reverse shock model, after the time $t_times$ at which the RS crosses the ejecta, the flux declines more slowly than $(t_oplus/t_times)^{-(2+beta)}$, where $t_oplus$ denotes the observers time and $beta$ is the spectral index of the X-ray emission. In the ``late internal shock model, decaying slopes much steeper than $(t_oplus/t_{rm e, oplus})^{-(2+beta)}$ are possible if the central engine shuts down after $t_{rm e, oplus}$ and the observed variability timescale of the X-ray flare is much shorter than $t_{rm e, oplus}$. The sharp decline of the X-ray flares detected in GRB 011121, XRF 050406, GRB 050502b, and GRB 050730 rules out the external forward-reverse shock model directly and favors the late internal shock model. These X-ray flares could thus hint that the central engine operates again and a new unsteady relativistic outflow is generated just a few minutes after the intrinsic hard burst.
The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of Gamma-Ray Bursts (GRBs), being observed in roughly 50% of afterglows with prompt followup observations. The flares range in fluence from a few pe rcent to ~ 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than 4 successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.
Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, HXMT, eXTP, and STROBE-X.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا