ﻻ يوجد ملخص باللغة العربية
The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled $beta$-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance linewidth varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments. The temperature dependence of the linewidth indicates that the magnetic properties of the Mn12 moments in this low dimensional configuration differ from bulk Mn12.
Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied alo
We present a detailed study of the influence of various interactions on the spin quantum tunneling in a Mn12 wheel molecule. The effects of single-ion and exchange (spin-orbit) anisotropy are first considered, followed by an analysis of the roles pla
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o
In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible
We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical a