ترغب بنشر مسار تعليمي؟ اضغط هنا

Network Structure and Dynamics, and Emergence of Robustness by Stabilizing Selection in an Artificial Genome

155   0   0.0 ( 0 )
 نشر من قبل Thimo Rohlf
 تاريخ النشر 2008
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this work we investigate these properties within an artificial genome model originally introduced by Reil. We analyze statistical properties of randomly generated genomes both on the sequence- and network level, and show that this model correctly predicts the frequency of genes in genomes as found in experimental data. Using an evolutionary algorithm based on stabilizing selection for a phenotype, we show that robustness against single base mutations, as well as against random changes in initial network states that mimic stochastic fluctuations in environmental conditions, can emerge in parallel. Evolved genomes exhibit characteristic patterns on both sequence and network level.



قيم البحث

اقرأ أيضاً

Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this paper we investigate these properties within an artificial genome model originally introduce d by Reil (1999). We analyze statistical properties of randomly generated genomes both on the sequence- and network level, and show that this model correctly predicts the frequency of genes in genomes as found in experimental data. Using an evolutionary algorithm based on stabilizing selection for a phenotype, we show that dynamical robustness against single base mutations, as well as against random changes in initial states of regulatory dynamics that mimic stochastic fluctuations in environmental conditions, can emerge in parallel. Point mutations at the sequence level have strongly non-linear effects on network wiring, including as well structurally neutral mutations and simultaneous rewiring of multiple connections, which occasionally lead to strong reorganization of the attractor landscape and metastability of evolutionary dynamics. Evolved genomes exhibit characteristic patterns on both sequence and network level.
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and glo bal network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into cumulus-type, i.e., those similar to puffy (white) clouds, and stratus-type, i.e., those similar to flat, dense (dark) low-lying clouds, and relate these network types to protein disorder dynamics and to differences in energy transmission processes. In the first class, there is limited overlap between the modules, which implies higher rigidity of the individual units; there the conformational changes can be described by an energy transfer mechanism. In the second class, the topology presents a compact structure with significant overlap between the modules; there the conformational changes can be described by multi-trajectories; that is, multiple highly populated pathways. We further propose that disordered protein regions evolved to help other protein segments reach rarely visited but functionally-related states. We also show the role of disorder in spatial games of amino acids; highlight the effects of intrinsically disordered proteins (IDPs) on cellular networks and list some possible studies linking protein disorder and protein structure networks.
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The central hit strategy selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The network influence strategy works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes or edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing more than 1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
We study a simplified, solvable model of a fully-connected metabolic network with constrained quenched disorder to mimic the conservation laws imposed by stoichiometry on chemical reactions. Within a spin-glass type of approach, we show that in prese nce of a conserved metabolic pool the flux state corresponding to maximal growth is stationary independently of the pool size. In addition, and at odds with the case of unconstrained networks, the volume of optimal flux configurations remains finite, indicating that the frustration imposed by stoichiometric constraints, while reducing growth capabilities, confers robustness and flexibility to the system. These results have a clear biological interpretation and provide a basic, fully analytical explanation to features recently observed in real metabolic networks.
Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extende d and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cells proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا