ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction of Half Metallicity along the Edge of Boron Nitride Zigzag Nanoribbons

477   0   0.0 ( 0 )
 نشر من قبل Fa Wei Zheng
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

First-principles calculations reveal half metallicity in zigzag boron nitride (BN) nanoribbons (ZBNNRs). When the B edge, but not the N edge, of the ZBNNR is passivated, despite being a pure $sp$-electron system, the ribbon shows a giant spin splitting. The electrons at the Fermi level are 100% spin polarized with a half-metal gap of 0.38 eV and its conductivity is dominated by metallic single-spin states. The two states across at the Dirac point have different molecular origins, which signals a switch of carrier velocity. The ZBNNR should be a good potential candidate for widegap spintronics.



قيم البحث

اقرأ أيضاً

We report a first-principles electronic-structure calculation on C and BN hybrid zigzag nanoribbons. We find that half-metallicity can arise in the hybrid nanoribbons even though stand-alone C or BN nanoribbon possesses a finite band gap. This unexpe cted half-metallicity in the hybrid nanos-tructures stems from a competition between the charge and spin polarizations, as well as from the pi orbital hybridization between C and BN. Our results point out a possibility of making spintronic devices solely based on nanoribbons and a new way of designing metal-free half metals.
63 - Jiang Zeng , Wei Chen , Ping Cui 2015
Lateral heterostructures of two-dimensional materials may exhibit various intriguing emergent properties. Yet when specified to the orientationally aligned heterojunctions of zigzag graphene and hexagonal boron nitride (hBN) nanoribbons, realizations of the high expectations on their properties encounter two standing hurtles. First, the rapid accumulation of strain energy prevents large- scale fabrication. Secondly, the pronounced half-metallicity predicted for freestanding graphene nanoribbons is severely suppressed. By properly tailoring orientational misalignment between zigzag graphene and chiral hBN nanoribbons, here we present a facile approach to overcome both obstacles. Our first-principles calculations show that the strain energy accumulation in such heterojunctions is significantly diminished for a range of misalignments. More strikingly, the half-metallicity is substantially enhanced from the orientationally aligned case, back to be comparable in magnitude with the freestanding case. The restored half-metallicity is largely attributed to the recovered superexchange interaction between the opposite heterojunction interfaces. The present findings may have important implications in eventual realization of graphene-based spintronics.
Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substant ial electronic band gaps that are directly linked to their structural boundary conditions. Even more intriguing are nanostructures with zigzag edges, which are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The most prominent example is zigzag graphene nanoribbons (ZGNRs) for which the edge states are predicted to couple ferromagnetically along the edge and antiferromagnetically between them. So far, a direct observation of the spin-polarized edge states for specifically designed and controlled zigzag edge topologies has not been achieved. This is mainly due to the limited precision of current top-down approaches, which results in poorly defined edge structures. Bottom-up fabrication approaches, on the other hand, were so far only successfully applied to the growth of AGNRs and related structures. Here, we describe the successful bottom-up synthesis of ZGNRs, which are fabricated by the surface-assisted colligation and cyclodehydrogenation of specifically designed precursor monomers including carbon groups that yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we prove the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will finally allow the characterization of their predicted spin-related properties such as spin confinement and filtering, and ultimately add the spin degree of freedom to graphene-based circuitry.
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th ne arest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment s on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا