ترغب بنشر مسار تعليمي؟ اضغط هنا

The first moment of quadratic Dirichlet L-functions

421   0   0.0 ( 0 )
 نشر من قبل Matthew Young
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Matthew P. Young




اسأل ChatGPT حول البحث

We obtain an asymptotic formula for the smoothly weighted first moment of primitive quadratic Dirichlet L-functions at the central point, with an error term that is square-root of the main term. Our approach uses a recursive technique that feeds the result back into itself, successively improving the error term.



قيم البحث

اقرأ أيضاً

66 - Quanli Shen 2019
We study the fourth moment of quadratic Dirichlet $L$-functions at $s= frac{1}{2}$. We show an asymptotic formula under the generalized Riemann hypothesis, and obtain a precise lower bound unconditionally. The proofs of these results follow closely a rguments of Soundararajan and Young [19] and Soundararajan [17].
129 - Quanli Shen 2021
We obtain the asymptotic formula with an error term $O(X^{frac{1}{2} + varepsilon})$ for the smoothed first moment of quadratic twists of modular $L$-functions. We also give a similar result for the smoothed first moment of the first derivative of qu adratic twists of modular $L$-functions. The argument is largely based on Youngs recursive method [19,20].
109 - Olga Balkanova 2019
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.
Let $qge3$ be an integer, $chi$ be a Dirichlet character modulo $q$, and $L(s,chi)$ denote the Dirichlet $L$-functions corresponding to $chi$. In this paper, we show some special function series, and give some new identities for the Dirichlet $L$-fun ctions involving Gauss sums. Specially, we give specific identities for $L(2,chi)$.
We look at the values of two Dirichlet $L$-functions at the Riemann zeros (or a horizontal shift of them). Off the critical line we show that for a positive proportion of these points the pairs of values of the two $L$-functions are linearly independ ent over $mathbb{R}$, which, in particular, means that their arguments are different. On the critical line we show that, up to height $T$, the values are different for $cT$ of the Riemann zeros for some positive $c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا