ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic nonlinear probes of one-dimensional Bose gases

275   0   0.0 ( 0 )
 نشر من قبل Claudia De Grandi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss two complementary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.



قيم البحث

اقرأ أيضاً

Low-dimensional systems are beautiful examples of many-body quantum physics. For one-dimensional systems the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regime. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1d Bose gases. Dynamic splitting is used to create two 1d systems in a phase coherent state. The time evolution of the coherence is revealed in local phase shifts of the subsequently observed interference patterns. Completely isolated 1d Bose gases are observed to exhibit a universal sub-exponential coherence decay in excellent agreement with recent predictions by Burkov et al. [Phys. Rev. Lett. 98, 200404 (2007)]. For two coupled 1d Bose gases the coherence factor is observed to approach a non-zero equilibrium value as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase locking two lasers by injection. The non-equilibrium dynamics of superfluids plays an important role in a wide range of physical systems, such as superconductors, quantum-Hall systems, superfluid Helium, and spin systems. Our experiments studying coherence dynamics show that 1d Bose gases are ideally suited for investigating this class of phenomena.
We study the dynamics of strongly correlated one-dimensional Bose gases in a combined harmonic and optical lattice potential subjected to sudden displacement of the confining potential. Using the time-evolving block decimation method, we perform a fi rst-principles quantum many-body simulation of the experiment of Fertig {it et al.} [Phys. Rev. Lett. {bf 94}, 120403 (2005)] across different values of the lattice depth ranging from the superfluid to the Mott insulator regimes. We find good quantitative agreement with this experiment: the damping of the dipole oscillations is significant even for shallow lattices, and the motion becomes overdamped with increasing lattice depth as observed. We show that the transition to overdamping is attributed to the decay of superfluid flow accelerated by quantum fluctuations, which occurs well before the emergence of Mott insulator domains.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
184 - Erhai Zhao , W. Vincent Liu 2008
We present a theory for a lattice array of weakly coupled one-dimensional ultracold attractive Fermi gases (1D `tubes) with spin imbalance, where strong intratube quantum fluctuations invalidate mean field theory. We first construct an effective fiel d theory, which treats spin-charge mixing exactly, based on the Bethe ansatz solution of the 1D single tube problem. We show that the 1D Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is a two-component Luttinger liquid, and its elementary excitations are fractional states carrying both charge and spin. We analyze the instability of the 1D FFLO state against inter-tube tunneling by renormalization group analysis, and find that it flows into either a polarized Fermi liquid or a FFLO superfluid, depending on the magnitude of interaction strength and spin imbalance. We obtain the phase diagram of the quasi-1D system and further determine the scaling of the superfluid transition temperature with intertube coupling.
167 - Bess Fang 2013
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas c rossover. A comparison with theoretical models taking into account the effect of finite temperature is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism. The disappearance of this mechanism through the quasicondensation crossover is mapped out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا