ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Dilation in Type Ia Supernova Spectra at High Redshift

260   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Blondin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multiepoch spectra of 13 high-redshift Type Ia supernovae (SNe Ia) drawn from the literature, the ESSENCE and SNLS projects, and our own separate dedicated program on the ESO Very Large Telescope. We use the Supernova Identification (SNID) code of Blondin & Tonry to determine the spectral ages in the supernova rest frame. Comparison with the observed elapsed time yields an apparent aging rate consistent with the 1/(1+z) factor (where z is the redshift) expected in a homogeneous, isotropic, expanding universe. These measurements thus confirm the expansion hypothesis, while unambiguously excluding models that predict no time dilation, such as Zwickys tired light hypothesis. We also test for power-law dependencies of the aging rate on redshift. The best-fit exponent for these models is consistent with the expected 1/(1+z) factor.



قيم البحث

اقرأ أيضاً

We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R~110,000) on the 2.4m Automated Planet Finder telescope at Lick Observatory. We identify multiple Na I D and K I absorption features, as well as absorption by Ca I H & K and several of the more common diffuse interstellar bands (DIBs). We see no evolution in any component of Na I D, Ca I, or in the DIBs, but do establish the dissipation/weakening of the two most blueshifted components of K I. We present several potential physical explanations, finding the most plausible to be photoionization of circumstellar material, and discuss the implications of our results with respect to the progenitor scenario of SN 2014J.
The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=Atimes M_g$, with $A=(1.1pm0.3)times10^{-14}$ SNe per year and solar mass.
In this work we analyse late-time (t > 100 d) optical spectra of low-redshift (z < 0.1) Type Ia supernovae (SNe Ia) which come mostly from the Berkeley Supernova Ia Program dataset. We also present spectra of SN 2011by for the first time. The BSNIP s ample studied consists of 34 SNe Ia with 60 nebular spectra, to which we add nebular spectral feature measurements of 20 SNe Ia from previously published work (Maeda et al. 2011; Blondin et al. 2012), representing the largest set of late-time SN Ia spectra ever analysed. The full width at half-maximum intensity (FWHM) and velocities of the [Fe III] {lambda}4701, [Fe II] {lambda}7155, and [Ni II] {lambda}7378 emission features are measured in most observations of spectroscopically normal objects where the data have signal-to-noise ratios >20 px^-1 and are older than 160 d past maximum brightness. The velocities of all three features are seen to be relatively constant with time, increasing only a few to ~20 km/s/d. The nebular velocity (v_neb, calculated by taking the average of the [Fe II] {lambda}7155 and [Ni II] {lambda}7378 velocities) is correlated with the near-maximum-brightness velocity gradient and early-time ejecta velocity. Nearly all high velocity gradient objects have redshifted nebular lines while most low velocity gradient objects have blueshifted nebular lines. No correlation is found between v_neb and {Delta}m_15(B), and for a given light-curve shape there is a large range of observed nebular velocities. The data also indicate a correlation between observed (B-V)_max and v_neb.
75 - G. Blanc , C. Afonso , C. Alard 2004
We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides t he type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.
We develop a method to measure the strength of the absorption features in Type Ia supernova (SN Ia) spectra and use it to make a quantitative comparison between the spectra of Type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 < z < 0.912) SNe Ia observed by the Supernova Cosmology Project . Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca II H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z=0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا