ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlations among discontinuities in QCD phase diagram

112   0   0.0 ( 0 )
 نشر من قبل Kouji Kashiwa
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show, in general, that when a discontinuity of either zeroth-order or first-order takes place in an order parameter such as the chiral condensate, discontinuities of the same order emerge in other order parameters such as the Polyakov loop. A condition for the coexistence theorem to be valid is clarified. Consequently, only when the condition breaks down, zeroth-order and first-order discontinuities can coexist on a phase boundary. We show with the Polyakov-loop extended Nambu--Jona-Lasinio model that such a type of coexistence is realized in the imaginary chemical potential region of the QCD phase diagram. We also present examples of coexistence of the same-order discontinuities in the real chemical potential region.



قيم البحث

اقرأ أيضاً

The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, mu_B and mu_{iso}, by using the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type ei ght-quark interaction can reproduce lattice QCD data at not only mu_{iso}=mu_B=0 but also mu_{iso}>0 and mu_B=0. In the mu_{iso}-mu_{B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the mu_B-T plane at mu_{iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the mu_{iso}-T plane at mu_B=0 as mu_{iso} increases. The thermodynamics at small T is controlled by sqrt{sigma^2+pi^2} defined by the chiral and pion condensates, sigma and pi.
We introduce a random matrix model with the symmetries of QCD at finite temperature and chemical potentials for baryon number and isospin. We analyze the phase diagram of this model in the chemical potential plane for different temperatures and quark masses. We find a rich phase structure with five different phases separated by both first and second order lines. The phases are characterized by the pion condensate and the chiral condensate for each of the flavors. In agreement with lattice simulations, we find that in the phase with zero pion condensate the critical temperature depends in the same way on the baryon number chemical potential and on the isospin chemical potential. At nonzero quark mass, we remarkably find that the critical end point at nonzero temperature and baryon chemical potential is split in two by an arbitrarily small isospin chemical potential. As a consequence, there are two crossovers that separate the hadronic phase from the quark-gluon plasma phase at high temperature. Detailed analytical results are obtained at zero temperature and in the chiral limit.
We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu--Jona-Lasinio model with eight-quark interactio n terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.
We show that the nonlocal two-flavor Nambu--Jona-Lasinio model predicts the enhancement of both chiral and axial symmetry breaking as the chiral imbalance of hot QCD matter, regulated by a chiral chemical potential $mu_5$, increases. The two crossove rs are reasonably close to each other in the range of $mu_5$ examined here and the pseudocritical temperatures rise with $mu_5$. The curvatures of the chiral and axial crossovers for the chiral quark chemical potential approximately coincide and give $kappa_5 simeq - 0.011$. We point out that the presence of $mu_5$ in thermodynamic equilibrium is inconsistent with the fact that the chiral charge is not a Noether-conserved quantity for massive fermions. The chiral chemical potential should not, therefore, be considered as a true chemical potential that sets a thermodynamically stable environment in the massive theory, but rather than as a new coupling that may require a renormalization in the ultraviolet domain. The divergence of an unrenormalized chiral density, corr{coming from zero-point fermionic fluctuations,} is a consequence of this property. We propose a solution to this problem via a renormalization procedure.
Phase transitions in the imaginary chemical potential region are studied by the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model that possesses the extended Z3 symmetry. The extended Z3 invariant quantities such as the partition function, the c hiral condensate and the modifed Polyakov loop have the Roberge-Weiss (RW) periodicity. There appear four types of phase transitions; deconfinement, chiral, Polykov-loop RW and chiral RW transitions. The orders of the chiral and deconfinement transitions depend on the presence or absence of current quark mass, but those of the Polykov-loop RW and chiral RW transitions do not. The scalar-type eightquark interaction newly added in the model makes the chiral transition line shift to the vicinity of the deconfiment transition line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا