ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal structure and physical properties of half-doped manganite nanocrystals with size < 100nm

193   0   0.0 ( 0 )
 نشر من قبل Tapati Sarkar Ms
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we report the structural and property (magnetic and electrical transport) measurements of nanocrystals of half-doped $mathrm{La_{0.5}Ca_{0.5}MnO_3}$(LCMO) synthesized by chemical route, having particle size down to an average diameter of 15nm. It was observed that the size reduction leads to change in crystal structure and the room temperature structure is arrested so that the structure does not evolve on cooling unlike bulk samples. The structural change mainly affects the orthorhombic distortion of the lattice. By making comparison with observed crystal structure data under hydrostatic pressure it is suggested that the change in the crystal structure of the nanocrystals occurs due to an effective hydrostatic pressure created by the surface pressure on size reduction. This not only changes the structure but also causes the room temperature structure to freeze-in. The size reduction also does not allow the long supercell modulation needed for the Charge Ordering, characteristic of this half-doped manganite, to set-in. The magnetic and transport measurements also show that the Charge Ordering (CO) does not occur when the size is reduced below a critical size. Instead, the nanocrystals show ferromagnetic ordering down to the lowest temperatures along with metallic type conductivity. Our investigation establishes a structural basis for the destabilization of CO state observed in half-doped manganite nanocrystals.



قيم البحث

اقرأ أيضاً

We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $muOmega$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $gamma$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior.
In this work we report the physical properties of the new intermetallic compound TbRhIn5 investigated by means of temperature dependent magnetic susceptibility, electrical resistivity, heat-capacity and resonant x-ray magnetic diffraction experiments . TbRhIn5 is an intermetallic compound that orders antiferromagnetically at TN = 45.5 K, the highest ordering temperature among the existing RRhIn5 (1-1-5, R = rare earth) materials. This result is in contrast to what is expected from a de Gennes scaling along the RRhIn5 series. The X-ray resonant diffraction data below TN reveal a commensurate antiferromagnetic (AFM) structure with a propagation vector (1/2 0 1/2) and the Tb moments oriented along the c-axis. Strong (over two order of magnitude) dipolar enhancements of the magnetic Bragg peaks were observed at both Tb absorption edges LII and LIII, indicating a fairly high polarization of the Tb 5d levels. Using a mean field model including an isotropic first-neighbors exchange interaction J(R-R) and the tetragonal crystalline electrical field (CEF), we were able to fit our experimental data and to explain the direction of the ordered Tb-moments and the enhanced TN of this compound. The evolution of the magnetic properties along the RRhIn5 series and its relation to CEF effects for a given rare-earth is discussed.
We report the synthesis of EuPtIn$_{4}$ single crystalline platelets by the In-flux technique. This compound crystallizes in the orthorhombic Cmcm structure with lattice parameters $a=4.542(1)$ AA, $b=16.955(2)$ AA$,$ and $c=7.389(1)$ AA. Measurement s of magnetic susceptibility, heat capacity, electrical resistivity, and electron spin resonance (ESR) reveal that EuPtIn$_{4}$ is a metallic Curie-Weiss paramagnet at high temperatures and presents antiferromagnetic (AFM) ordering below $T_{N}=13.3$ K. In addition, we observe a successive anomaly at $T^{*} = 12.6$ K and a spin-flop transition at $H_{c} sim 2.5$ T applied along the $ac$-plane. In the paramagnetic state, a single Eu$^{2+}$ Dysonian ESR line with a Korringa relaxation rate of $b = 4.1(2)$ Oe/K is observed. Interestingly, even at high temperatures, both ESR linewidth and electrical resistivity reveal a similar anisotropy. We discuss a possible common microscopic origin for the observed anisotropy in these physical quantities likely associated with an anisotropic magnetic interaction between Eu$^{2+}$ 4$f$ electrons mediated by conduction electrons.
73 - Y.S. Lee , S. Onoda , T. Arima 2006
We report on the in-plane anisotropy of the electronic response in the spin/charge/orbital ordered phase of a half-doped layered-structure manganite. The optical conductivity spectra for a single domain of Eu$_{1/2}$% Ca$_{3/2}$MnO$_{4}$ unambiguousl y show the anisotropic charge dynamics which well corresponds to the theoretical calculation: the optical conductivity with the polarization along the zigzag ferromagnetic chain direction exhibits a smaller gap and a larger intensity at lower energies than that of the perpendicular polarization mostly due to the charge/orbital ordering and the associated quantum interference effect.
We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)2Mn2O7 in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are com pared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا