ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Jahn-Teller effect in electron transport through single C60 molecules

478   0   0.0 ( 0 )
 نشر من قبل Thomas Frederiksen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning tunneling spectra on single C60 molecules that are sufficiently decoupled from the substrate exhibit a characteristic fine structure, which is explained as due to the dynamic Jahn-Teller effect. Using electron-phonon couplings extracted from density functional theory we calculate the tunneling spectrum through the C60- anionic state and find excellent agreement with measured data.



قيم البحث

اقرأ أيضاً

The vibrational modes of Jahn-Teller molecules are affected by a Berry phase that is associated with a conical intersection of the adiabatic potentials. We investigate theoretically how this Berry phase affects transport through a single $E otimes e$ Jahn-Teller molecule when the tunneling electrons continually switch the molecule between a symmetric and a Jahn-Teller distorted charge state. We find that the Berry phase in conjunction with a spectral trapping mechanism leads to a current blockade even in regions outside the Coulomb blockade. The blockade is strongly asymmetric in the gate voltage and induces pronounced negative differential conductance.
Using a first principles approach, we study the electron transport properties of a new class of molecular wires containing fluorenone units, whose features open up new possibilities for controlling transport through a single molecule. We show that th e presence of side groups attached to these units leads to Fano resonances close to the Fermi energy. As a consequence electron transport through the molecule can be controlled either by chemically modifying the side group, or by changing the conformation of the side group. This sensitivity, opens up new possibilities for novel single-molecule sensors. We also show that transport can be controlled by tilting a molecule with respect to the electrode surfaces. Our results compare favorably with recent experiments.
We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance with in a given molecular charge state, and we demonstrate how to decide the interference class directly from the contacting geometry. For neutral alternant hydrocarbons, we employ the Coulson-Rushbrooke-McLachlan pairing theorem to show that the interference class is decided simply by tunneling on and off the molecule from same, or different sublattices. More generally, we investigate a range of smaller molecules by means of exact diag- onalization combined with a perturbative treatment of the molecule-lead tunnel coupling. While these results generally agree well with GW calculations, they are shown to be at odds with simpler mean-field treatments. For molecules with spin-degenerate ground states, we show that for most junctions, interference causes no transmission nodes, but argue that it may lead to a non-standard gate-dependence of the zero-bias Kondo resonance.
First-principles density functional theory methods are used to investigate the structure, energetics, and vibrational motions of the neutral vacancy defect in diamond. The measured optical absorption spectrum demonstrates that the tetrahedral $T_d$ p oint group symmetry of pristine diamond is maintained when a vacancy defect is present. This is shown to arise from the presence of a dynamic Jahn-Teller distortion that is stabilised by large vibrational anharmonicity. Our calculations further demonstrate that the dynamic Jahn-Teller-distorted structure of $T_d$ symmetry is lower in energy than the static Jahn-Teller distorted tetragonal $D_{2d}$ vacancy defect, in agreement with experimental observations. The tetrahedral vacancy structure becomes more stable with respect to the tetragonal structure by increasing temperature. The large anharmonicity arises mainly from quartic vibrations, and is associated with a saddle point of the Born-Oppenheimer surface and a minimum in the free energy. This study demonstrates that the behaviour of Jahn-Teller distortions of point defects can be calculated accurately using anharmonic vibrational methods. Our work will open the way for first-principles treatments of dynamic Jahn-Teller systems in condensed matter.
The surprising insulating and superconducting states of narrow-band graphene twisted bilayers have been mostly discussed so far in terms of strong electron correlation, with little or no attention to phonons and electron-phonon effects. We found that , among the 33492 phonons of a fully relaxed $theta=1.08^circ$ twisted bilayer, there are few special, hard and nearly dispersionless modes that resemble global vibrations of the moire supercell, as if it were a single, ultralarge molecule. One of them, doubly degenerate at $Gamma$ with symmetry $A_1+B_1$, couples very strongly with the valley degrees of freedom, also doubly degenerate, realizing a so-called $text{E}otimestext{e}$ Jahn-Teller (JT) coupling. The JT coupling lifts very efficiently all degeneracies which arise from the valley symmetry, and may lead, for an average atomic displacement as small as $0.5~$mA, to an insulating state at charge neutrality. This insulator possesses a non-trivial topology testified by the odd winding of the Wilson loop. In addition, freezing the same phonon at a zone boundary point brings about insulating states at most integer occupancies of the four ultra-flat electronic bands. Following that line, we further study the properties of the superconducting state that might be stabilized by these modes. Since the JT coupling modulates the hopping between AB and BA stacked regions, pairing occurs in the spin-singlet Cooper channel at the inter-(AB-BA) scale, which may condense a superconducting order parameter in the extended $s$-wave and/or $dpm id$-wave symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا