ترغب بنشر مسار تعليمي؟ اضغط هنا

On-orbit Performance of the Solar Optical Telescope aboard Hinode

314   0   0.0 ( 0 )
 نشر من قبل Kiyoshi Ichimoto Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On-orbit performance of the Solar Optical Telescope (SOT) aboard Hinode is described with some attentions on its unpredicted aspects. In general, SOT revealed an excellent performance and has been providing outstanding data. Some unexpected features exist, however, in behaviors of the focus position, throughput and structural stability. Most of them are recovered by the daily operation i.e., frequent focus adjustment, careful heater setting and corrections in data analysis. The tunable filter contains air bubbles which degrade the data quality significantly. Schemes for tuning the filter without disturbing the bubbles have been developed and tested, and some useful procedures to obtain Dopplergram and magnetogram are now available. October and March when the orbit of satellite becomes nearly perpendicular to the direction towards the sun provide a favorable condition for continuous runs of the narrow-band filter imager.



قيم البحث

اقرأ أيضاً

254 - Philipp Oleynik 2019
The Particle Telescope (PATE) of FORESAIL-1 mission is described. FORESAIL-1 is a CubeSat mission to polar Low Earth Orbit. Its scientific objectives are to characterize electron precipitation from the radiation belts and to observe energetic neutral atoms (ENAs) originating from the Sun during the strongest solar flares. For that purpose, the 3-unit CubeSat carries a particle telescope that measures energetic electrons in the nominal energy range of 80--800 keV in seven energy channels and energetic protons at 0.3--10 MeV in ten channels. In addition, particles penetrating the whole telescope at higher energies will be measured in three channels: one $>$800 keV electron channel, two integral proton channels at $>$10 MeV energies. The instrument contains two telescopes at right angles to each other, one measuring along the spin axis of the spacecraft and one perpendicular to it. During a spin period (nominally 15 s), the rotating telescope will, thus, deliver angular distributions of protons and electrons, at 11.25-degree clock-angle resolution, which enables one to accurately determine the pitch-angle distribution and separate the trapped and precipitating particles. During the last part of the mission, the rotation axis will be accurately pointed toward the Sun, enabling the measurement of the energetic hydrogen from that direction. Using the geomagnetic field as a filter and comparing the rates observed by the two telescopes, the instrument can observe the solar ENA flux for events similar to the only one so far observed in December 2006. We present the Geant4-simulated energy and angular response functions of the telescope and assess its sensitivity showing that they are adequate to address the scientific objectives of the mission.
High resolution and seeing-free spectroscopic observation of a decaying sunspot was done with the Solar Optical Telescope aboard Hinode satellite. The target was NOAA 10944 located in the west side of the solar surface from March 2 to March 4, 2007. The umbra included many umbral dots (UDs) with size of ~300 km in continuum light. We report the magnetic structures and Doppler velocity fields around UDs, based on the Milne-Eddington inversion of the two iron absorption lines at 6302 angstrom. The histograms of magnetic field strength(B), inclination angle(i), and Doppler velocity(v) of UDs showed a center-to-limb variation. Observed at disk center, UDs had (1)slightly smaller field strength (Delta B=-17 Gauss) and (2)relative blue shifts (Delta v=28 m s-1) compared to their surroundings. When the sunspot got close to the limb, UDs and their surroundings showed almost no difference in the magnetic and Doppler values. This center-to-limb variation can be understood by the formation height difference in a cusp-shaped magnetized atmosphere around UDs, due to the weakly magnetized hot gas intrusion. In addition, some UDs showed oscillatory light curves with multiple peaks around 10 min, which may indicate the presence of the oscillatory convection. We discuss our results in the frameworks of two theoretical models, the monolithic model (Schussler & Vogler 2006) and the field-free intrusion model (Spruit & Scharmer 2006).
We observed small scale magnetic flux emergence in a sunspot moat region by the Solar Optical Telescope (SOT) aboard the Hinode satellite. We analyzed filtergram images observed in the wavelengths of Fe 6302 angstrom, G-band and Ca II H. In Stokes I images of Fe 6302 angstrom, emerging magnetic flux were recognized as dark lanes. In G-band, they showed their shapes almost the same as in Stokes I images. These magnetic flux appeared as dark filaments in Ca II H images. Stokes V images of Fe 6302 angstrom showed pairs of opposite polarities at footpoints of each filament. These magnetic concentrations are identified to correspond to bright points in G-band/Ca II H images. From the analysis of time-sliced diagrams, we derived following properties of emerging flux, which are consistent with the previous works. (1) Two footpoints separate each other at a speed of 4.2 km/s during the initial phase of evolution and decreases to about 1 km/s in 10 minutes later. (2) Ca II H filaments appear almost simultaneously with the formation of dark lanes in Stokes I in the observational cadence of 2 minutes. (3) The lifetime of the dark lanes in Stokes I and G-band is 8 minutes, while that of Ca filament is 12 minutes. An interesting phenomena was observed that an emerging flux tube expands laterally in the photosphere with a speed of 3.8 km/s. Discussion on the horizontal expansion of flux tube will be given with refernce to previous simulation studies.
High resolution imaging observation of a sunspot umbra was done with Hinode Solar Optical Telescope (SOT). Filtergrams in wavelengths of blue and green continuum were taken during three consecutive days. The umbra consisted of a dark core region, sev eral diffuse components and numerous umbral dots. We derived basic properties of umbral dots (UDs), especially their temperatures, lifetimes, proper motions, spatial distribution and morphological evolution. Brightness of UDs is confirmed to depend on the brightness of their surrounding background. Several UDs show fission and fusion. Thanks to the stable condition of space observation, we could first follow the temporal behavior of these events. The derived properties of internal structure of the umbra are discussed in viewpoint of magnetoconvection in a strong magnetic field.
The 3D structure of sunspots has been extensively studied for the last two decades. A recent advancement of the Stokes inversion technique prompts us to revisit the problem. We investigate the global depth-dependent thermal, velocity and magnetic pro perties of a sunspot, as well as the interconnection between various local properties. High quality Stokes profiles of a disk centered, regular sunspot acquired by the SOT/SP (Hinode) are analyzed. To obtain the depth-dependent stratification of the physical parameters, we use the spatially coupled version of the SPINOR code. The vertical temperature gradient in the lower to mid-photosphere is smallest in the umbra, it is considerably larger in the penumbra and still somewhat larger in the spots surroundings. The azimuthally averaged field becomes more horizontal with radial distance from the center of the spot, but more vertical with height. At tau=1, the LOS velocity shows an average upflow of 300 ms-1 in the inner penumbra and an average downflow of 1300 ms-1 in the outer penumbra. The downflow continues outside the visible penumbral boundary. The sunspot shows a moderate negative twist of < 5^0 at tau=1, which increases with height. The sunspot umbra and the spines of the penumbra show considerable similarity in their physical properties albeit with some quantitative differences. The temperature shows a general anticorrelation with the field strength, with the exception of the heads of penumbral filaments, where a weak positive correlation is found. The dependence of the physical parameters on each other over the full sunspot shows a qualitative similarity to that of a standard penumbral filament and its surrounding spines. Our results suggest that the spines in the penumbra are basically the outward extension of the umbra. The spines and the penumbral filaments are together the basic elements forming a sunspot penumbra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا