ﻻ يوجد ملخص باللغة العربية
We provide a characterization and analysis of the effects of dissipation on oscillator assisted (qubus) quantum gates. The effects can be understood and minimized by looking at the dynamics of the signal coherence and its entanglement with the continuous variable probe. Adding loss in between successive interactions we obtain the effective quantum operations, providing a novel approach to loss analysis in such hybrid settings. We find that in the presence of moderate dissipation the gate can operate with a high fidelity. We also show how a simple iteration scheme leads to independent single qubit dephasing, while retaining the conditional phase operation regardless of the amount of loss incurred by the probe.
In multi-qubit system, correlated errors subject to unwanted interactions with other qubits is one of the major obstacles for scaling up quantum computers to be applicable. We present two approaches to correct such noise and demonstrate with high fid
Mitigating crosstalk errors, whether classical or quantum mechanical, is critically important for achieving high-fidelity entangling gates in multi-qubit circuits. For weakly anharmonic superconducting qubits, unwanted $ZZ$ interactions can be suppre
We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One w
We propose and demonstrate a quantum control scheme for hybrid quantum registers that can reduce the operation time, and therefore the effects of relaxation, compared to existing implementations. It combines resonant excitation pulses with periods of