ترغب بنشر مسار تعليمي؟ اضغط هنا

Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

484   0   0.0 ( 0 )
 نشر من قبل Adrian Melott
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dimitra Atri -




اسأل ChatGPT حول البحث

A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.



قيم البحث

اقرأ أيضاً

228 - Andrew Overholt 2012
Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies < 1 GeV. Astrophysical sources including high energy solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. Our results demonstrate that deducing the nature of primaries from ground level neutron enhancements would be very difficult.
A 3-day international workshop on atmospheric monitoring and calibration for high-energy astroparticle detectors, with a view towards next-generation facilities. The atmosphere is an integral component of many high-energy astroparticle detectors. Ima ging atmospheric Cherenkov telescopes and cosmic-ray extensive air shower detectors are the two instruments driving the rapidly evolving fields of very-high- and ultra-high-energy astrophysics. In these instruments, the atmosphere is used as a giant calorimeter where cosmic rays and gamma rays deposit their energy and initiate EASs; it is also the medium through which the resulting Cherenkov light propagates. Uncertainties in real-time atmospheric conditions and in the fixed atmospheric models typically dominate all other systematic errors. With the improved sensitivity of upgraded IACTs such as H.E.S.S.-II and MAGIC-II and future facilities like the Cherenkov Telescope Array (CTA) and JEM-EUSO, statistical uncertainties are expected to be significantly reduced, leaving the atmosphere as the limiting factor in the determination of astroparticle spectra. Varying weather conditions necessitate the development of suitable atmospheric monitoring to be integrated in the overall instrument calibration, including Monte Carlo simulations. With expertise distributed across multiple collaborations and scientific domains, an interdisciplinary workshop is being convened to advance progress on this critical and timely topic.
Cosmic rays pervade the Galaxy and are thought to be accelerated in supernova shocks. The interaction of cosmic rays with dense interstellar matter has two important effects: 1) high energy (>1 GeV) protons produce {gamma}-rays by {pi}0-meson decay; 2) low energy (< 1 GeV) cosmic rays (protons and electrons) ionize the gas. We present here new observations towards a molecular cloud close to the W51C supernova remnant and associated with a recently discovered TeV {gamma}-ray source. Our observations show that the cloud ionization degree is highly enhanced, implying a cosmic ray ionization rate ~ 10-15 s-1, i.e. 100 times larger than the standard value in molecular clouds. This is consistent with the idea that the cloud is irradiated by an enhanced flux of freshly accelerated low-energy cosmic rays. In addition, the observed high cosmic ray ionization rate leads to an instability in the chemistry of the cloud, which keeps the electron fraction high, ~ 10-5, in a large fraction (Av geq 6mag) of the cloud and low, ~ 10-7, in the interior. The two states have been predicted in the literature as high- and low-ionization phases (HIP and LIP). This is the observational evidence of their simultaneous presence in a cloud.
Due to its Earth-like minimum mass of 1.27 M$_{text{E}}$ and its close proximity to our Solar system, Proxima Centauri b is one of the most interesting exoplanets for habitability studies. Its host star, Proxima Centauri, is however a strongly flarin g star, which is expected to provide a very hostile environment for potentially habitable planets. We perform a habitability study of Proxima Centauri b assuming an Earth-like atmosphere under high stellar particle bombardment, with a focus on spectral transmission features. We employ our extensive model suite calculating energy spectra of stellar particles, their journey through the planetary magnetosphere, ionosphere, and atmosphere, ultimately providing planetary climate and spectral characteristics, as outlined in Herbst et al. (2019). Our results suggest that together with the incident stellar energy flux, high particle influxes can lead to efficient heating of the planet well into temperate climates, by limiting CH$_4$ amounts, which would otherwise run into anti-greenhouse for such planets around M-stars. We identify some key spectral features relevant for future spectral observations: First, NO$_2$ becomes the major absorber in the visible, which greatly impacts the Rayleigh slope. Second, H$_2$O features can be masked by CH$_4$ (near infra-red) and CO$_2$ (mid to far infra-red), making them non-detectable in transmission. Third, O$_3$ is destroyed and instead HNO$_3$ features become clearly visible in the mid to far infra-red. Lastly, assuming a few percent of CO$_2$ in the atmosphere, CO$_2$ absorption at 5.3 $mu$m becomes significant (for flare and non-flare cases), strongly overlapping with a flare related NO feature in Earths atmosphere.
Recent work by Aplin and Lockwood [1] was interpreted by them as showing that there is a multiplying ratio of order 10$^{12}$ for the infra-red energy absorbed in the ionization produced by cosmic rays in the atmosphere to the energy content of the c osmic rays themselves. We argue here that the interpretation of the result in terms of infra-red absorption by ionization is incorrect and that the result is therefore most likely due to a technical artefact
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا