ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structures of Fe$_{3-x}V$_x$Si Probed by Photoemission Spectroscopy

638   0   0.0 ( 0 )
 نشر من قبل Yitao Cui Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structures of the Heusler type compounds Fe$_{3-x}V$_x$Si in the concentration range between x = 0 and x = 1 have been probed by photoemission spectroscopy (PES). The observed shift of Si 2p core- level and the main valence band structres indicate a chemical potential shift to higher energy with increasing x. It is also clarified that the density of state at Fermi edge is owing to the collaboration of V 3d and Fe 3d derived states. Besides the decrease of the spectral intensity near Fermi edge with increasing x suggests the formation of pseudo gap at large x.



قيم البحث

اقرأ أيضاً

127 - S. C. Wi , J.-S. Kang , J. H. Kim 2003
Electronic structures of Zn$_{1-x}$Co$_x$O have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O $2p$ valence band, with a peak around $sim 3$ eV binding energy. The Co $2p$ XAS spectrum provides evidence that the Co ions in Zn$_{1-x}$Co$_{x}$O are in the divalent Co$^{2+}$ ($d^7$) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.
We have investigated the electronic structure of the $p$-type diluted magnetic semiconductor In$_{1-x}$Mn$_x$As by photoemission spectroscopy. The Mn 3$d$ partial density of states is found to be basically similar to that of Ga$_{1-x}$Mn$_x$As. How ever, the impurity-band like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga$_{1-x}$Mn$_x$As. This difference would explain the difference in transport, magnetic and optical properties of In$_{1-x}$Mn$_x$As and Ga$_{1-x}$Mn$_x$As. The different electronic structures are attributed to the weaker Mn 3$d$ - As 4$p$ hybridization in In$_{1-x}$Mn$_x$As than in Ga$_{1-x}$Mn$_x$As.
247 - C. Q. Han , M. Y. Yao , X. X. Bai 2014
Electronic structures of single crystalline black phosphorus were studied by state-of-art angleresolved photoemission spectroscopy. Through high resolution photon energy dependence measurements, the band dispersions along out-of-plane and in-plane di rections are experimentally determined. The electrons were found to be more localized in the ab-plane than that is predicted in calculations. Beside the kz-dispersive bulk bands, resonant surface state is also observed in the momentum space. Our finds strongly suggest that more details need to be considered to fully understand the electronic properties of black phosphorus theoretically.
The electronic structure of the magnetic semiconductor Ga$_{1-x}$Cr$_{x}$N and the effect of Si doping on it have been investigated by photoemission and soft x-ray absorption spectroscopy. We have confirmed that Cr in GaN is predominantly trivalent s ubstituting for Ga, and that Cr 3$d$ states appear within the band gap of GaN just above the N 2$p$-derived valence-band maximum. As a result of Si doping, downward shifts of the core levels (except for Cr 2$p$) and the formation of new states near the Fermi level were observed, which we attribute to the upward chemical potential shift and the formation of a small amount of Cr$^{2+}$ species caused by the electron doping. Possibility of Cr-rich cluster growth by Si doping are discussed based on the spectroscopic and magnetization data.
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3d$^9$ configuration as Cu$^{2+}$ in high-$T_C$ cuprates, the electronic structure consistencies and varia nces remain elusive, due to the lack of direct experimental probes. Here, we present a soft x-ray photoemission spectroscopy study on both parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison to density function theory + U calculations, we estimate U ~ 5 eV, smaller than the charge transfer energy $Delta$ ~ 8 eV, in contrast to the cuprates being charge transfer insulators. Near the Fermi level (EF), we observe a signature of rare-earth spectral intensity in the parent compound, which is depleted upon doping. The parent compound, self-doped from rare-earth electrons, exhibits higher density of states at EF but manifests weaker superconducting instability than the Sr-doped case, demonstrating a complex interplay between the strongly-correlated Ni 3d and the weakly-interacting rare-earth 5d states in these oxide-intermetallic nickelates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا