ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction of Local Conservation Laws by Generalized Isometric Embeddings of Vector Bundles

124   0   0.0 ( 0 )
 نشر من قبل Nabil Kahouadji
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Nabil Kahouadji




اسأل ChatGPT حول البحث

This article uses Cartan-Kahler theory to construct local conservation laws from covariantly closed vector valued differential forms, objects that can be given, for example, by harmonic maps between two Riemannian manifolds. We apply the articles main result to construct conservation laws for covariant divergence free energy-momentum tensors. We also generalize the local isometric embedding of surfaces in the analytic case by applying the main result to vector bundles of rank two over any surface.



قيم البحث

اقرأ أيضاً

Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.
152 - David Fisher , Kevin Whyte 2014
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of higher rank symmetric spaces. In particular, we produce embeddings of $SL(n,mathbb R)$ into $Sp(2(n-1),mathbb R)$ when no isometric embeddings exist. A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow-Morse Lemma in higher rank. Typically this lemma is replaced by the quasi-flat theorem which says that maximal quasi-flat is within bounded distance of a finite union of flats. We improve this by showing that the quasi-flat is in fact flat off of a subset of codimension $2$.
The definition of quasi-local mass for a bounded space-like region in space-time is essential in several major unsettled problems in general relativity. The quasi-local mass is expected to be a type of flux integral on the boundary two-surface and sh ould be independent of whichever space-like region it bounds. An important idea which is related to the Hamiltonian formulation of general relativity is to consider a reference surface in a flat ambient space with the same first fundamental form and derive the quasi-local mass from the difference of the extrinsic geometries. This approach has been taken by Brown-York and Liu-Yau (see also related works) to define such notions using the isometric embedding theorem into the Euclidean three-space. However, there exist surfaces in the Minkowski space whose quasilocal mass is strictly positive. It appears that the momentum information needs to be accounted for to reconcile the difference. In order to fully capture this information, we use isometric embeddings into the Minkowski space as references. In this article, we first prove an existence and uniqueness theorem for such isometric embeddings. We then solve the boundary value problem for Jangs equation as a procedure to recognize such a surface in the Minkowski space. In doing so, we discover new expression of quasi-local mass. The new mass is positive when the ambient space-time satisfies the dominant energy condition and vanishes on surfaces in the Minkowski space. It also has the nice asymptotic behavior at spatial and null infinity. Some of these results were announced in [29].
J. Nash proved that the geometry of any Riemannian manifold M imposes no restrictions to be embedded isometrically into a (fixed) ball B_{mathbb{R}^{N}}(1) of the Euclidean space R^N. However, the geometry of M appears, to some extent, imposing restr ictions on the mean curvature vector of the embedding.
We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to pr ove the Morita invariance of VB-cohomology, with implications to deformation cohomology of Lie groupoids and of classic geometries. We discuss applications of our theory to Poisson geometry, providing a new insight over Marsden-Weinstein reduction and the integration of Dirac structures. We conclude by proving that the derived category of VB-groupoids is a Morita invariant, which leads to a notion of VB-stacks, and solves (an instance of) an open question on representations up to homotopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا